分析 (Ⅰ)由已知等式結(jié)合正弦定理求得sinC的值,進(jìn)一步求得C;
(Ⅱ)由余弦定理結(jié)合已知c=$\sqrt{7}$,且a+b=5求得ab=6,代入三角形面積公式得答案.
解答 解:(Ⅰ)由$\sqrt{3}b=2csinB$及正弦定理得,
$\sqrt{3}•2R•sinB=2•2R•sinCsinB…(1)$,①
∵sinB≠0,∴sinC=$\frac{\sqrt{3}}{2}$,
又△ABC是銳角三角形,∴$C=\frac{π}{3}$;
(Ⅱ)由余弦定理得:${a}^{2}+^{2}-2ab•cos\frac{π}{3}=7$,即a2+b2-ab=7,②
由②變形得(a+b)2-3ab=7,
∵a+b=5,∴ab=6,
∴${S_{△ABC}}=\frac{1}{2}absinC=\frac{1}{2}×6×\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{2}$.
點(diǎn)評(píng) 本題考查三角形的解法,考查了正弦定理和余弦定理在解三角形中的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 240 | B. | 300 | C. | 360 | D. | 400 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
井號(hào)I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(biāo)(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 如果a>b,c≠0,那么$\frac{a}{c}>\frac{c}$ | B. | 如果a>b,那么a2>b2 | ||
C. | 如果a>b,c>d,那么a+d>b+c | D. | 如果a>b,c>d,那么a-d>b-c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{\sqrt{2}}{6}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com