5.已知函數(shù)f(x)=ax2-2x(a>0),求函數(shù)f(x)在區(qū)域[0,1]上的最小值.

分析 求出函數(shù)的對(duì)稱軸方程,討論當(dāng)$\frac{1}{a}$>1,即0<a<1時(shí);當(dāng)0<$\frac{1}{a}$≤1,即a≥1,結(jié)合單調(diào)性可得最小值.

解答 解:函數(shù)f(x)=ax2-2x(a>0)的對(duì)稱軸為x=$\frac{1}{a}$,
當(dāng)$\frac{1}{a}$>1,即0<a<1時(shí),f(x)在[0,$\frac{1}{a}$)遞減,($\frac{1}{a}$,1]遞增,
可得f($\frac{1}{a}$)取得最小值,且為-$\frac{1}{a}$;
當(dāng)0<$\frac{1}{a}$≤1,即a≥1,f(x)在[0,1]遞減,
可得f(1)取得最小值,且為a-2.
綜上可得,當(dāng)0<a<1時(shí),f(x)的最小值為-$\frac{1}{a}$;
當(dāng)a≥1時(shí),f(x)的最小值為a-2.

點(diǎn)評(píng) 本題考查二次函數(shù)的最值的求法,注意討論對(duì)稱軸和區(qū)間的關(guān)系,運(yùn)用單調(diào)性,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.△ABC的三個(gè)頂點(diǎn)為A(4,0),B(8,10),C(0,6),求:
(1)BC邊上的高所在的直線方程;
(2)過(guò)C點(diǎn)且平行于AB的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)動(dòng)直線x=m與函數(shù)f(x)=x,g(x)=lnx的圖象分別交于點(diǎn)M,N,則|MN|的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如果α是第三象限角,那么-α,$\frac{α}{2}$,2α的終邊在第幾象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=sin(-2x)的單凋減區(qū)間是(  )
A.[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ],k∈ZB.[$\frac{π}{2}$+2kπ,$\frac{3π}{4}$+2kπ],k∈Z
C.[π+2kπ,3π+2kπ],k∈ZD.[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知等差數(shù)列{an}的前n項(xiàng)和Sn=An2,且a3+a5=28,則實(shí)數(shù)A等于( 。
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=log${\;}_{\frac{1}{2}}$|cosx|的定義域是{x|x≠kπ+$\frac{π}{2}$,k∈z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)向量$\overrightarrow{a}$=(1,k),$\overrightarrow$=(x,y),記$\overrightarrow{a}$與$\overrightarrow$的夾角為θ.若對(duì)所有滿足不等式|x-2|≤y≤1的x,y,都有θ∈(0,$\frac{π}{2}$),則實(shí)數(shù)k的取值范圍是(  )
A.(-1,+∞)B.(-1,0)∪(0,+∞)C.(1,+∞)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知點(diǎn)M,N分別是空間四面體OABC的邊OA和BC的中點(diǎn),P為線段MN的中點(diǎn),若$\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}+γ\overrightarrow{OC}$,則實(shí)數(shù)λ+μ+γ=$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案