14.設(shè)向量$\overrightarrow{a}$=(1,k),$\overrightarrow$=(x,y),記$\overrightarrow{a}$與$\overrightarrow$的夾角為θ.若對所有滿足不等式|x-2|≤y≤1的x,y,都有θ∈(0,$\frac{π}{2}$),則實數(shù)k的取值范圍是( 。
A.(-1,+∞)B.(-1,0)∪(0,+∞)C.(1,+∞)D.(-1,0)∪(1,+∞)

分析 畫出不等式|x-2|≤y≤1的可行域:△PQR及內(nèi)部,畫出直線l:x+ky=0,旋轉(zhuǎn)直線l,觀察直線在可行域的位置,即可得到所求范圍.

解答 解:畫出不等式|x-2|≤y≤1的可行域:△PQR及內(nèi)部,
畫出直線l:x+ky=0,當(dāng)k=0時,x>0顯然成立;
旋轉(zhuǎn)直線l,當(dāng)l∥QR,即有直線l的斜率為1,可得k=-1,
由圖象可得k>-1,
又θ≠0,所以$\overrightarrow{a}$與$\overrightarrow$不能同向,因此k>1或k<0;
所以k的范圍是-1<k<0或k>1;
故選:D.

點評 本題考查不等式表示的平面區(qū)域,注意討論k的變化,同時考查向量的數(shù)量積的坐標表示和夾角,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若lg(lnx)=0,則x=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2-2x(a>0),求函數(shù)f(x)在區(qū)域[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線E:y2=2px(p>0),過點M(-1,1)作拋物線E的兩條切線,切點分別為A,B,直線AB的斜率為2.
(1)求拋物線的標準方程:
(2)與圓(x-1)2+y2=1相切的直線1,與拋物線交于P,Q兩點.若在拋物線上存在點C,使$\overrightarrow{OC}$=$λ(\overrightarrow{OP}+\overrightarrow{OQ})$(λ>0),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)M,N是拋物線C:y2=2px(p>0)上任意兩點,點E的坐標為(-λ,0)(λ≥0),若$\overrightarrow{EM}$•$\overrightarrow{EN}$的最小值為0,則λ=( 。
A.0B.$\frac{p}{2}$C.pD.2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=alnx-x,其中a≠0.
(1)求f(x)的單調(diào)區(qū)間;
(2)若對任意的x1∈[1,e],總存在x2∈[1,e],使得f(x1)與f(x2)互為相反數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosθ}\\{y=2+sinθ}\end{array}\right.$(θ為參數(shù)),點P在曲線C1上,點A的坐標為(1,0),點Q滿足$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$.
(1)求點Q的軌跡方程;
(2)以O(shè)為極點,若點M為曲線ρ=-2sinθ上一點,求|MQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,長方體ABCD-A1B1C1D1中,AA1=AB=1,AD=2,E為BC的中點,點M,N分別為棱DD1,A1D1的中點.
(Ⅰ)求證:平面CMN∥平面A1DE;
(Ⅱ)求證:平面A1DE⊥平面A1AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,是奇函數(shù)且在(0,1]上單調(diào)遞減的函數(shù)是( 。
A.y=-x2+2xB.y=x+$\frac{1}{x}$C.y=2x-2-xD.y=1-$\sqrt{x}$

查看答案和解析>>

同步練習(xí)冊答案