9.在△ABC中,若A=135°,B=30°,a=$\sqrt{2}$,則b等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 由已知利用正弦定理即可計(jì)算求值得解.

解答 解:∵A=135°,B=30°,a=$\sqrt{2}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{\sqrt{2}×sin30°}{sin135°}$=1.
故選:A.

點(diǎn)評 本題主要考查了正弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知A、B兩個盒子中都放有4個大小相同的小球,其中A盒子中放有1個紅球,3個黑球;B盒子中放有2個紅球,2個黑球.
(1)若甲從A盒子中任取一球、乙從B盒子中任取一球,求甲、乙兩人所取球的顏色不同的概率;
(2)若甲每次從A盒子中任取兩球,記下顏色后放回,抽取兩次;乙每次從B盒子中任取兩球,記下顏色后放回,抽取兩次.在四次取球的結(jié)果中,記兩球顏色相同的次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)sinα≠0,求證:cosα•cos2α•cos22α…cos2nα=$\frac{sin{2}^{n+1}α}{{2}^{n+1}sinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ln(x+1),g(x)=ex-1,
(Ⅰ)若F(x)=f(x)+px,求F(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意的x2>x1>0,比較f(x2)-f(x1)與g(x2-x1)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,一架飛機(jī)以600km/h的速度,沿方位角60°的航向從A地出發(fā)向B地飛行,飛行了36min后到達(dá)E地,飛機(jī)由于天氣原因按命令改飛C地,已知AD=600$\sqrt{3}$km,CD=1200km,BC=500km,且∠ADC=30°,∠BCD=113°.問收到命令時飛機(jī)應(yīng)該沿什么航向飛行,此時E地離C地的距離是多少?(參考數(shù)據(jù):tan37°=$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)是R上的偶函數(shù),若對于x≥0,都有f(x+2)=-f(x),且當(dāng)x∈[0,2)時,f(x)=log8(x+1),則f(-2013)+f(2014)的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在復(fù)平面上,已知復(fù)數(shù)z1與z2的對應(yīng)點(diǎn)關(guān)于直線y=x對稱,且滿足z1z2=9i,則|z1|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過P(a,b)向圓(x-2)2+(y-3)2=1引切線PT,T為切點(diǎn),若|PT|=|PO|(O為坐標(biāo)原點(diǎn)),則切線|PT|的最小值為$\frac{{6\sqrt{13}}}{13}$.

查看答案和解析>>

同步練習(xí)冊答案