14.如圖,一架飛機以600km/h的速度,沿方位角60°的航向從A地出發(fā)向B地飛行,飛行了36min后到達E地,飛機由于天氣原因按命令改飛C地,已知AD=600$\sqrt{3}$km,CD=1200km,BC=500km,且∠ADC=30°,∠BCD=113°.問收到命令時飛機應(yīng)該沿什么航向飛行,此時E地離C地的距離是多少?(參考數(shù)據(jù):tan37°=$\frac{3}{4}$)

分析 在△ACD中使用余弦定理得出AC及∠ACD,在△ABC中使用余弦定理得出AB及∠CAE,再在△ACE中使用余弦定理得出CE及∠AEC.

解答 解:連接AC,CE,在△ACD中由余弦定理,得
$A{C^2}={(600\sqrt{3})^2}+{1200^2}-2•600\sqrt{3}•1200•\frac{{\sqrt{3}}}{2}=360000$,
∴AC=600,
則CD2=AD2+AC2,即△ACD是直角三角形,且∠ACD=60°,
又∠BCD=113°,則∠ACB=53°,
∵tan37°=$\frac{3}{4}$,
∴cos53°=sin37°=$\frac{3}{5}$.
在△ABC中,由余弦定理,得:$A{B^2}={600^2}+{500^2}-2•600•500•\frac{3}{5}={500^2}$,則AB=500,
又BC=500,則△ABC是等腰三角形,且∠BAC=53°,
由已知有$AE=600•\frac{36}{60}=360$,
在△ACE中,由余弦定理,有$CE=\sqrt{{{360}^2}+{{600}^2}-2•360•600•\frac{3}{5}}=480$,
又AC2=AE2+CE2,則∠AEC=90°.
由飛機出發(fā)時的方位角為600,則飛機由E地改飛C地的方位角為:90°+60°=150°.
答:收到命令時飛機應(yīng)該沿方位角150°的航向飛行,E地離C地480km.

點評 本題考查了余弦定理,解三角形的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等比數(shù)列{an}的公比為3,且a1+a3+a5=9,則$log_{\frac{1}{3}}}$(a5+a7+a9)=(  )
A.$\frac{1}{6}$B.$-\frac{1}{6}$C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,BC∥AD,∠BAD=120°,AP=AB=AD=2BC.
(1)在平面PAB內(nèi),過點B作直線l,使得l∥平面PCD(保留作圖痕跡),并加以證明;
(2)求直線PB和平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}-1,x<1\\ 4(x-1)(x-2),x≥1\end{array}$的值域為[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,若A=135°,B=30°,a=$\sqrt{2}$,則b等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若(x-1)8=a0+a1(1+x)+a2(1+x)2+…+a8(1+x)8,則a5=-448.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.甲、乙同時炮擊一架敵機,已知甲擊中敵機的概率為0.3,乙擊中敵機的概率為0.5,敵機被擊中的概率為0.65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.角α頂點在坐標原點O,始邊與x軸的非負半軸重合,tanα=-2,點P在α的終邊上,點Q(-3,-4),則$\overrightarrow{OP}$與$\overrightarrow{OQ}$夾角余弦值為$\frac{{\sqrt{5}}}{5}$或$-\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=sinωx(ω>0),將y=f(x)的圖象向右平移$\frac{π}{6}$個單位長度后,所得圖象關(guān)于y軸對稱,則ω的最小值是( 。
A.$\frac{1}{3}$B.3C.6D.9

查看答案和解析>>

同步練習(xí)冊答案