分析 在△ACD中使用余弦定理得出AC及∠ACD,在△ABC中使用余弦定理得出AB及∠CAE,再在△ACE中使用余弦定理得出CE及∠AEC.
解答 解:連接AC,CE,在△ACD中由余弦定理,得
$A{C^2}={(600\sqrt{3})^2}+{1200^2}-2•600\sqrt{3}•1200•\frac{{\sqrt{3}}}{2}=360000$,
∴AC=600,
則CD2=AD2+AC2,即△ACD是直角三角形,且∠ACD=60°,
又∠BCD=113°,則∠ACB=53°,
∵tan37°=$\frac{3}{4}$,
∴cos53°=sin37°=$\frac{3}{5}$.
在△ABC中,由余弦定理,得:$A{B^2}={600^2}+{500^2}-2•600•500•\frac{3}{5}={500^2}$,則AB=500,
又BC=500,則△ABC是等腰三角形,且∠BAC=53°,
由已知有$AE=600•\frac{36}{60}=360$,
在△ACE中,由余弦定理,有$CE=\sqrt{{{360}^2}+{{600}^2}-2•360•600•\frac{3}{5}}=480$,
又AC2=AE2+CE2,則∠AEC=90°.
由飛機出發(fā)時的方位角為600,則飛機由E地改飛C地的方位角為:90°+60°=150°.
答:收到命令時飛機應(yīng)該沿方位角150°的航向飛行,E地離C地480km.
點評 本題考查了余弦定理,解三角形的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $-\frac{1}{6}$ | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com