9.已知函數(shù)$f(x)=\left\{\begin{array}{l}cos\frac{πx}{2},-1≤x≤1\\{x^2}-1,|x|>1\end{array}\right.$,則關(guān)于x的方程f2(x)-3f(x)+2=0的實根的個數(shù)是 ( 。
A.2B.3C.4D.5

分析 先解出f(x)=1或f(x)=2,再結(jié)合函數(shù)圖象,得到方程f(x)=1或2分別有3個根和2個根,故共有5個根,即為結(jié)果.

解答 解:根據(jù)函數(shù)f(x)的解析式,作出f(x)的圖象,如右圖,
再由方程f2(x)-3f(x)+2=0,
解得,f(x)=1或f(x)=2,分類討論如下:
①當(dāng)f(x)=1時,由圖可知,該方程有3三解,
②當(dāng)f(x)=2時,由圖可知,該方程有2三解,
綜合知,原方程f2(x)-3f(x)+2=0共有5解,
故答案為:D.

點評 本題主要考查了根的存在及根的個數(shù)判斷,涉及三角函數(shù)和二次函數(shù)的圖象和性質(zhì),體現(xiàn)了數(shù)形結(jié)合的解題思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=cos2x-2sinx的值域為[-3,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若數(shù)列的通項公式是an=3-2n,則a2n=3-4n,$\frac{{a}_{2}}{{a}_{3}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知成等比數(shù)列的三個數(shù)的積為27,和為13,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知集合M={x|x+1≥0},N={x|-2<x<2},則M∩N=[-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)f(x)=$\frac{\sqrt{2x-1}}{x-1}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為了宣傳2015年10月在貴陽舉行的“世界眾籌大會”,“世界眾籌大會”籌委會舉辦了“大眾創(chuàng)業(yè)、萬眾創(chuàng)新”知識有獎問答活動,隨機對市民15~65歲的人群抽樣n人,回答問題統(tǒng)計結(jié)果如圖所示:
組號 分組回答正確的人數(shù) 回答正確的人數(shù)占本組的頻率  頻率分布直方圖
 第1組[15,25) 5 0.5 
 第2組[25,35) a 0.9
 第3組[35,45) 27 x
 第4組[45,55) 9 0.36
 第5組[55,65] 3 0.2
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,“世界眾籌大會”籌委會決定給所抽取的6人頒發(fā)幸運獎,各組抽取的人數(shù)分別是多少?
(3)請根據(jù)頻率分布直方圖,估計樣本數(shù)據(jù)的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.計算:sin75°cos15°-cos75°sin15°=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C1:$\left\{\begin{array}{l}{x=-2+cosα}\\{y=3+sinα}\end{array}\right.$(α為參數(shù)),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=2\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).
(1)將C1,C2的方程化為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應(yīng)的參數(shù)為α=$\frac{π}{2}$,Q為C2上的動點,求PQ中點M到直線l:ρcos(θ-$\frac{π}{3}$)=$\sqrt{3}$的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案