14.求函數(shù)f(x)=$\frac{\sqrt{2x-1}}{x-1}$的定義域.

分析 根據(jù)函數(shù)成立的條件進(jìn)行求解即可.

解答 解:要使函數(shù)有意義,則$\left\{\begin{array}{l}{x-1≠0}\\{2x-1≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≠1}\\{x≥\frac{1}{2}}\end{array}\right.$,即x≥$\frac{1}{2}$且x≠1,
即函數(shù)的定義域為{x|x≥$\frac{1}{2}$且x≠1}.

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)y=lnx-x3+2x的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求函數(shù)y=sin(3x+$\frac{π}{3}$)cos(x-$\frac{π}{6}$)+cos(3x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)的圖象關(guān)于對稱軸對稱的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知空間直角坐標(biāo)系中,點A(-1,1,2),點B(-1,1,0),點C(1,1,0).
(1)求證:△ABC是等腰直角三角形.
(2)將△ABC繞直角邊旋轉(zhuǎn)一周得到的旋轉(zhuǎn)體叫什么?并求出這個旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=\left\{\begin{array}{l}cos\frac{πx}{2},-1≤x≤1\\{x^2}-1,|x|>1\end{array}\right.$,則關(guān)于x的方程f2(x)-3f(x)+2=0的實根的個數(shù)是 ( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線C1和C2的極坐標(biāo)方程分別為ρ=6$\sqrt{2}$cos(θ-$\frac{π}{4}$)和ρcos(θ+$\frac{π}{4}$)=4$\sqrt{2}$,長度為1的線段AB的兩端點在曲線C2上,點P在曲線C1上,求△PAB面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知不等式x2+(6-a)x+9-3a>0,若該不等式對任意x∈[-2,0]恒成立,則a的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知am=-2,則a2m的值為( 。
A.-4B.4C.(-2)mD.2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a,b為正實數(shù),且a+b=2,則$\frac{{a}^{2}+2}{a}$+$\frac{^{2}}{b+1}$-2的最小值為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案