11.已知2-ai=b+i(a,b∈R),其中i為虛數(shù)單位,則a+b=( 。
A.-1B.1C.2D.3

分析 由實部等于實部,虛部等于虛部列式求得a,b的值得答案.

解答 解:由2-ai=b+i,得$\left\{\begin{array}{l}{2=b}\\{-a=1}\end{array}\right.$,即a=-1,b=2.
∴a+b=1.
故選:B.

點評 本題考查復(fù)數(shù)相等的條件,是基礎(chǔ)的會考題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)A={x∈R|$\frac{1}{x}$≥1},B={x∈R|ln(1-x)≤0},則“x∈A”是“x∈B”的( 。
A.充分不必要條件B.既不充分也不必要條件
C.充要條件D.必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將一枚質(zhì)地均勻的骰子先后拋擲兩次,若第一次朝上一面的點數(shù)為a,第二次朝上一面的點數(shù)為b,則函數(shù)y=ax2-2bx+1在(-∞,$\frac{1}{2}$]上為減函數(shù)的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在如圖所示的四棱錐中,底面ABCD是平行四邊形,AB=4,BC=2,∠BCD=60°,且PD⊥底面ABCD,點E是AB的中點,點F是PC上一點.
(1)若F是PC的中點,證明EF∥平面PAD;
(2)若EF⊥CD,求PF:FC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知第四象限角α的終邊與單位圓交于點$P(\frac{4}{5},m)$
(1)寫出sinα,cosα,tanα的值;
(2)求$\frac{{sin(π+α)+2sin(\frac{π}{2}-α)}}{2cos(π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=log2x,g(x)=2log2(2x+a),a∈R.
(1)求不等式1≤f(x2)+|f(x)-1|≤5的解集;
(2)若$?x∈[\frac{1}{4},\frac{9}{4}]$,f(16x)≥g(x),求實數(shù)a的取值范圍;
(3)設(shè)a>-2,求函數(shù)h(x)=g(x)-f(x),x∈[1,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R)
(1)如果函數(shù)f(x)為奇函數(shù),求實數(shù)a的值;
(2)證明:對任意的實數(shù)a,函數(shù)f(x)在(-∞,+∞)上是增函數(shù);
(3)若對任意的實數(shù)x,f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=alnx+bx2,若函數(shù)f(x)的圖象在點(1,1)處的切線與y軸垂直,則實數(shù)a+b=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知F1、F2是雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的左右兩個焦點,過F2且斜率為1的直線l交橢圓于A、B兩點.
(Ⅰ)求直線l的方程及△AF1B的周長;
(Ⅱ)求線段|AB|的長.

查看答案和解析>>

同步練習(xí)冊答案