分析 求得直線恒過定點(0,1),由直線與橢圓$\frac{x^2}{2010}+\frac{y^2}{m}=1$恒有公共點,可得(0,1)在橢圓上或在橢圓內(nèi).代入橢圓方程,解不等式即可得到所求范圍.
解答 解:直線y=kx+1即為y-1=k(x-0),
則直線恒過定點(0,1),
由直線與橢圓$\frac{x^2}{2010}+\frac{y^2}{m}=1$恒有公共點,
可得(0,1)在橢圓上或在橢圓內(nèi).
即有$\frac{0}{2010}$+$\frac{1}{m}$≤1,
解得m≥1,又m>0,且m≠2010,
即有m≥1,且m≠2010,
故答案為:m≥1,且m≠2010.
點評 本題考查橢圓和直線的位置關(guān)系,注意運用直線恒過定點,定點在橢圓上或橢圓內(nèi),是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{3}}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+(y+2)2=5 | B. | x2+(y-2)2=5 | C. | (x-2)2+y2=5 | D. | (x-2)2+(y-2)2=5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | $4+2\sqrt{5}$ | C. | $4\sqrt{5}$ | D. | $8\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com