16.已知sinθ-2cosθ=$\sqrt{5}$,則tan(θ十$\frac{π}{4}$)的值為$\frac{1}{3}$.

分析 由條件利用同角三角函數(shù)的基本關系求得tanθ的值,再利用兩角和的正切公式求得tan(θ十$\frac{π}{4}$)的值.

解答 解:∵sinθ-2cosθ=$\sqrt{5}$,∴平方可得 1+3cos2θ-4sinθcosθ=5,即 $\frac{{3cos}^{2}θ-4sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=4,
即 $\frac{3-4tanθ}{{tan}^{2}θ+1}$=4,求得tanθ=-$\frac{1}{2}$  則tan(θ十$\frac{π}{4}$)=$\frac{tanθ+1}{1-tanθ}$=$\frac{\frac{1}{2}}{\frac{3}{2}}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點評 本題主要考查同角三角函數(shù)的基本關系,兩角和的正切公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知某幾何體的三視圖的側視圖是一個正三角形,如圖所示,則該幾何體的表面積等于( 。
A.60+4$\sqrt{3}$+2$\sqrt{21}$B.60+2$\sqrt{3}$+2$\sqrt{21}$C.60+2$\sqrt{3}$+4$\sqrt{21}$D.60+4$\sqrt{3}$+4$\sqrt{21}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若偶函數(shù)f(x)在[0,2]上單調遞減,則( 。
A.f(-1)>f $({{{log}_{0.5}}\frac{1}{4}})$>f(lg0.5)B.f(lg0.5)>f(-1)>f $({{{log}_{0.5}}\frac{1}{4}})$
C.f $({{{log}_{0.5}}\frac{1}{4}})$>f(-1)>f(lg0.5)D.f(lg0.5)>f $({{{log}_{0.5}}\frac{1}{4}})$>f(-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,在一個棱長為2的正方體魚缸內放入一個倒置的無底圓錐形容器,圓錐的上底圓周與魚缸的底面正方形相切,圓錐的頂點在魚缸的缸底上,現(xiàn)在向魚缸內隨機地投入一粒魚食,則“魚食能被魚缸內在圓錐外面的魚吃到”的概率是( 。
A.1-$\frac{π}{4}$B.$\frac{π}{12}$C.$\frac{π}{4}$D.1-$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.求經過兩直線3x-2y+1=0和x+3y+4=0的交點,且垂直于直線x+3y+4=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知冪函數(shù)$g(x)={x^{-\frac{1}{2}{m^2}+m+\frac{3}{2}}}$(m∈Z)的圖象關于y軸對稱,且g(2)<g(3)
(1)求m的值和函數(shù)g(x)的解析式;
(2)函數(shù)f(x)=ag(x)+a2x+3(a∈R)在區(qū)間[-2,-1]上是單調遞增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.圓x2+y2+ax-2ay+2a2+3a=0的圓心在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在三棱錐P-ABC中,PA⊥底面ABC,AB=AC=PA,∠BAC=90°,點E滿足$\overrightarrow{PE}$=$\frac{1}{4}$$\overrightarrow{PB}$,則直線AE和PC所成角的余弦值是$\frac{3\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若直線y=kx+1與橢圓$\frac{x^2}{2010}+\frac{y^2}{m}=1$恒有公共點,則m的取值范圍是:m≥1,且m≠2010.

查看答案和解析>>

同步練習冊答案