15.設(shè)正數(shù)a,b滿足log2a=log3b,則下列結(jié)論中,不可能成立的是(  )
A.1<a<bB.0<b<a<1C.a=bD.1<b<a

分析 利用特例當(dāng)a=4,b=3時(shí),log24=2>log33,log2a>log3b,問(wèn)題得以解決.

解答 解:當(dāng)a=4,b=3時(shí),
log24=2>log33,
∴l(xiāng)og2a>log3b,
故選:D.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的圖象和性質(zhì),取特殊值法是常用的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=2sin(2x-\frac{π}{3})$;
(1)求函數(shù)f(x)的周期以及單調(diào)遞增區(qū)間;
(2)在給出的直角坐標(biāo)系中,請(qǐng)用五點(diǎn)作圖法畫出f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列說(shuō)法正確的是( 。
A.若直線l平行于平面α內(nèi)的無(wú)數(shù)條直線,則l∥α
B.若直線a在平面α外,則a∥α
C.若直線a∥b,b?α,則a∥α
D.若直線a∥b,b?α,則直線a就平行于平面內(nèi)的無(wú)數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$a={log_{\frac{1}{2}}}3$,$b={({\frac{1}{3}})^{0.3}}$,c=lnπ,則的a、b、c大小關(guān)系是c>b>a(用“>”從大到小排列)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)$a={(\frac{1}{2})^{2.5}},b={(2.5)^0},c={2^{2.5}}$,則(  )
A.a>b>cB.b>a>cC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,角$α,β(0<α<\frac{π}{2}<β<π)$的頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的正半軸重合,終邊分別與單位圓交于A,B兩點(diǎn),A,B兩點(diǎn)的橫坐標(biāo)分別為$\frac{5}{13},-\frac{4}{5}$.
(Ⅰ)寫出cosα,cosβ的值;(只需寫出結(jié)果)
(Ⅱ)求tanβ的值;
(Ⅲ)求∠AOB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,在矩形ABCD中,$AB=\frac{3}{2},BC=2$,沿BD將矩形ABCD折疊,連接AC,所得三棱錐A-BCD的正視圖和俯視圖如圖所示,則三棱錐A-BCD的側(cè)視圖的面積為( 。
A.$\frac{9}{25}$B.$\frac{12}{5}$C.$\frac{18}{25}$D.$\frac{36}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=3,且$\overrightarrow{a}$在$\overrightarrow$方向上的投影與$\overrightarrow$在$\overrightarrow{a}$方向上的投影相等,則|$\overrightarrow{a}$-$\overrightarrow$|等于$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是空間兩個(gè)不共線的向量,已知$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=5$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow{DC}$=-$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,且A,B,D三點(diǎn)共線,則實(shí)數(shù)k=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案