分析 (1)根據(jù)周期公式可求周期,由三角函數(shù)的單調性的性質即可求函數(shù)y=f(x)的單調遞增區(qū)間;
(2)列表,描點,連線即可利用“五點作圖法”畫出函數(shù)y=f(x)在[0,π]上的圖象.
解答 解:(1)∵$f(x)=2sin(2x-\frac{π}{3})$;
∴f(x)的周期T=$\frac{2π}{2}$=π,由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,即可解得單調遞增區(qū)間為:[kπ-$\frac{π}{12}$,kπ$+\frac{5π}{12}$],k∈Z,
(2)列表如下:
2x-$\frac{π}{3}$ | -$\frac{π}{3}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2 π |
x | 0 | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ | $\frac{7π}{6}$ |
y | -$\sqrt{3}$ | 0 | 2 | 0 | -2 | 0 |
點評 本題主要考查三角函數(shù)的圖象和性質,五點法作函數(shù)y=Asin(ωx+φ)的圖象,要求熟練掌握五點作圖法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1<a<b | B. | 0<b<a<1 | C. | a=b | D. | 1<b<a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com