4.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=3,且$\overrightarrow{a}$在$\overrightarrow$方向上的投影與$\overrightarrow$在$\overrightarrow{a}$方向上的投影相等,則|$\overrightarrow{a}$-$\overrightarrow$|等于$\sqrt{10}$.

分析 根據(jù)投影相等列出方程解出向量夾角,求出數(shù)量積,代入模長公式計(jì)算.

解答 解:設(shè)$\overrightarrow{a},\overrightarrow$夾角為θ,則cosθ=3cosθ,∴cosθ=0,$θ=\frac{π}{2}$.
∴$\overrightarrow{a}•\overrightarrow$=0,∴($\overrightarrow{a}-\overrightarrow$)2=${\overrightarrow{a}}^{2}+{\overrightarrow}^{2}-2\overrightarrow{a}•\overrightarrow$=10.∴|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{10}$.
故答案為$\sqrt{10}$.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算及模長運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算:
(1)${0.2^{-2}}-{π^0}+{(\frac{1}{27})^{-\;\;\frac{1}{3}}}$;
(2)log39+log26-log23+log43×log316.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)正數(shù)a,b滿足log2a=log3b,則下列結(jié)論中,不可能成立的是(  )
A.1<a<bB.0<b<a<1C.a=bD.1<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{x}{2}$,cos$\frac{x}{2}$),$\overrightarrow{n}$=(sin$\frac{x}{2}$,cos$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在銳角△ABC中,已知A=$\frac{π}{3}$,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.等差數(shù)列{an}中,a3=7,a5=a2+6,則{an}的通項(xiàng)公式為an=2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為檢測某種零件的生產(chǎn)質(zhì)量,檢驗(yàn)人員需抽取同批次的零件樣本進(jìn)行檢測指標(biāo)評分.若檢測后評分結(jié)果大于60分的零件為合格零件,評分結(jié)果不超過40分的零件將直接被淘汰,評分結(jié)果在(40,60]內(nèi)的零件可能被修復(fù)也可能被淘汰.現(xiàn)檢驗(yàn)員小張檢測出200個(gè)合格零件,根據(jù)指標(biāo)評分繪制的頻率分布直方圖如圖所示.
(1)求出頻率分布與直方圖中a的值;
(2)估計(jì)這200個(gè)零件評分結(jié)果的平均數(shù)和中位數(shù);
(2)根據(jù)已有的經(jīng)驗(yàn),可能被修復(fù)的零件個(gè)體被修復(fù)的概率如表:
零件評分結(jié)果所在區(qū)間(40,50](50,60]
每個(gè)零件個(gè)數(shù)被修復(fù)的概率$\frac{1}{3}$$\frac{1}{2}$
假設(shè)每個(gè)零件被修復(fù)與否相互獨(dú)立.現(xiàn)有5個(gè)零件的檢測指標(biāo)評分結(jié)果為(單位:分):38,43,45,52,58,
①求這5個(gè)零件中,至多有2個(gè)不被修復(fù)而淘汰的概率;
②記這5個(gè)零件被修復(fù)的個(gè)數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.己知函數(shù)f(x)=x-a1nx(a≠0,a∈R).
(Ⅰ)討論f(x)的極值;
(Ⅱ)設(shè)A(x1,f(x1)),B(x2,f(x2))(0<x1<x2)是曲線y=f(x)上不同兩點(diǎn),若存在t∈(x1,x2),使得y=f(x)在(t,f(t))處的切線與直線AB平行,求證:t<$\frac{{x}_{1}+{x}_{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,方格紙中小正方形的邊長為1,則此幾何體的體積為(  )
A.$\frac{4}{3}$B.$\frac{2}{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知F1、F2為雙曲線E的左、右焦點(diǎn),點(diǎn)M在E上,△F1F2M為等腰三角形,且頂角為120°,則E的離心率為( 。
A.$\frac{\sqrt{5}+1}{2}$B.$\frac{\sqrt{3}}{2}$+1C.$\frac{\sqrt{3}+1}{2}$D.$\frac{\sqrt{2}+1}{2}$

查看答案和解析>>

同步練習(xí)冊答案