15.已知集合A={x|-1≤x≤1),集合B={x|x2-2x≤0),則集合A∩B=(  )
A.[-1,0]B.[-1,2]C.[0,1]D.(一∞,1]∪[2,+∞)

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:由B中不等式變形得:x(x-2)≤0,
解得:0≤x≤2,即B=[0,2],
∵A=[-1,1],
∴A∩B=[0,1],
故選:C.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知圓O:x2+y2=4,點(diǎn)A為圓O與x軸正半軸交點(diǎn),過點(diǎn)B(-4,0)的直線與圓O交于P、Q兩點(diǎn)(不同于點(diǎn)A),則S△APQ的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=ax-lnx在(2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2)B.(-∞,2]C.$[{\frac{1}{2},+∞})$D.$[{\frac{1}{4},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中正確命題的個數(shù)是( 。
(1)cosα≠0是$α≠2kπ+\frac{π}{2}(k∈Z)$的充分必要條件
(2)f(x)=|sinx|+|cosx|,則f(x)最小正周期是π
(3)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變
(4)設(shè)隨機(jī)變量ζ服從正態(tài)分布N(0,1),若P(ζ>1)=p,則$P(-1<ζ<0)=\frac{1}{2}-p$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.集合A={x|y=lg(x-1)},$B=\left\{{y|y=}\right.x+\frac{1}{x},x>0\left.{\;}\right\}$,則A∩B=(  )
A.(0,+∞)B.(2,+∞)C.D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若(ax-l)6展開式中x3的系數(shù)為20,則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在正項(xiàng)等比數(shù)列{an}中,a2=3,a8=27,則該數(shù)列第5項(xiàng)a5為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.點(diǎn)到A(12,16)的距離等于它到點(diǎn)B(3,4)的距離的2倍,求該動點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.a(chǎn)為實(shí)數(shù),求函數(shù)f(x)=sinxcosx+a(sinx-cosx),x∈[$\frac{π}{2}$,π]的最大值.

查看答案和解析>>

同步練習(xí)冊答案