5.已知圓O:x2+y2=4,點(diǎn)A為圓O與x軸正半軸交點(diǎn),過點(diǎn)B(-4,0)的直線與圓O交于P、Q兩點(diǎn)(不同于點(diǎn)A),則S△APQ的最大值為3.

分析 設(shè)直線方程為y=k(x+4),與圓的方程聯(lián)立,求出|PQ|,A到直線的距離,表示出面積,換元,配方,即可得出結(jié)論.

解答 解:設(shè)直線方程為y=k(x+4),即kx-y+4k=0,
與圓的方程聯(lián)立,可得(1+k2)x2+8k2x+16k2-4=0,
∴|PQ|=$\sqrt{{k}^{2}+1}$•$\sqrt{(-\frac{8{k}^{2}}{1+{k}^{2}})^{2}-4•\frac{16{k}^{2}-4}{1+{k}^{2}}}$=$\sqrt{\frac{16-48{k}^{2}}{1+{k}^{2}}}$,
A到直線的距離d=$\frac{|6k|}{\sqrt{{k}^{2}+1}}$,
∴S△APQ=12$\sqrt{\frac{{k}^{2}-3{k}^{4}}{({k}^{2}+1)^{2}}}$,
設(shè)1+k2=t(t>1),S△APQ=12$\sqrt{-4(\frac{1}{t}-\frac{7}{8})^{2}+\frac{1}{16}}$,
∴t=$\frac{8}{7}$時(shí),S△APQ的最大值為3.
故答案為:3.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查三角形面積的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.某校從五月開始,要求高三學(xué)生下午2:30前到校,加班班主任李老師下午每天到校,假設(shè)李老師和小紅同學(xué)在下午2:00到2:30之間到校,且每人在該段時(shí)間到校都是等可能的,則小紅同學(xué)比李老師至少早5分鐘到校的概率為$\frac{25}{72}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合A={-1,2,3,7},B={-2,-1,3},則A∪B={-2,-1,2,3,7}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.過圓外一點(diǎn)P作圓的切線PA(A為切點(diǎn)),再作割線PBC依次交圓于B,C兩點(diǎn).若PA=6,AC=4,BC=9,求AB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)$f(x)=\sqrt{3}sinxcosx+{cos^2}x$,則函數(shù)f(x)在區(qū)間$[{\frac{π}{8},\frac{π}{3}}]$上的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.實(shí)數(shù)x,y,z滿足x>0,y>0,z>0,求證:$\sqrt{x}+\sqrt{y}+\sqrt{z}≤\frac{x}{2}+\frac{y}{2}+\frac{z}{2}+\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)$y=\sqrt{3}cosx+sinx$,$x∈[{-\frac{π}{3},π}]$的值域是$[-\sqrt{3},2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,滿足$\frac{a-b+c}≤\frac{c}{a+b-c}$,則角A的范圍是( 。
A.$({0,\frac{π}{6}}]$B.$({0,\frac{π}{3}}]$C.$[{\frac{π}{6},π})$D.$[{\frac{π}{3},π})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={x|-1≤x≤1),集合B={x|x2-2x≤0),則集合A∩B=( 。
A.[-1,0]B.[-1,2]C.[0,1]D.(一∞,1]∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案