1.函數(shù)y=f(x)是R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=2x,則當(dāng)x>0時(shí),f(x)=( 。
A.-2xB.2-xC.-2-xD.2x

分析 x>0時(shí),-x<0,根據(jù)已知可求得f(-x),根據(jù)奇函數(shù)的性質(zhì)f(x)=-f(-x)即可求得f(x)的表達(dá)式.

解答 解:x>0時(shí),-x<0,∵x<0時(shí),f(x)=2x,
∴當(dāng)x>0時(shí)f(-x)=-2-x,
∵f(x)是R上的奇函數(shù),
∴當(dāng)x>0時(shí),f(x))=-f(-x)=-2-x
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)解析式的求解,利用了奇函數(shù)的性質(zhì)f(x)=-f(-x),計(jì)算簡(jiǎn)單,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知a,b,c三個(gè)數(shù)成等差數(shù)列,其中a=5+2$\sqrt{6}$,c=5-2$\sqrt{6}$,則b的值為( 。
A.2$\sqrt{6}$B.$\sqrt{6}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,程序的循環(huán)次數(shù)為3次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知點(diǎn)P在曲線C:y2=4-2x2上,點(diǎn)A(0,-$\sqrt{2}$),則|PA|的最大值為(  )
A.2-$\sqrt{2}$B.2+$\sqrt{2}$C.$\sqrt{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow$=(-1,1),則2$\overrightarrow{a}$+$\overrightarrow$等于( 。
A.(5,7)B.(5,9)C.(3,7)D.(3,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)已知π<α<2π,cosα=$\frac{3}{5}$,求cos(5π+α)•tan(α-7π)的值;
(2)已知$cos(\frac{π}{6}-α)$=$\frac{\sqrt{3}}{3}$,求sin($\frac{π}{3}$+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列結(jié)論:
①若A是B的必要不充分條件,則?B也是?A的必要不充分條件;
②“x≠2”是“x2≠4”的充分不必要條件;
③在△ABC中“sinA>sinB”是“A>B”的充要條件;
④若a、b是實(shí)數(shù),則“|a+b|=|a|+|b|”的充要條件是“ab≥0”.
其中正確的序號(hào)是( 。
A.①②B.①③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列橢圓中最接近于圓的是(  )
A.4x2+9y2=36B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{20}$=1C.9x2+4y2=36D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求函數(shù)y=4x-2x+1+3,x∈(-∞,1]的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案