20.已知橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線與橢圓相交于P,Q兩點(diǎn),若PQ⊥PF1,且4PF1=3PQ,則橢圓的離心率e=$\frac{\sqrt{2}}{2}$.

分析 設(shè)|QF2|=m,|PF2|=n,利用橢圓的定義可得|QF1|=2a-m,|PF1|=2a-n.由4|PF1|=3|PQ|,可得4(2a-n)=3(m+n).由PF1⊥PQ,利用勾股定理可得:(2a-n)2+n2=4c2,(2a-n)2+(m+n)2=(2a-m)2.聯(lián)立解得即可.

解答 解:如圖所示,設(shè)|QF2|=m,|PF2|=n,
則|QF1|=2a-m,|PF1|=2a-n.
∵4|PF1|=3|PQ|,∴4(2a-n)=3(m+n),
∵PF1⊥PQ,
∴(2a-n)2+n2=4c2,
(2a-n)2+(m+n)2=(2a-m)2
聯(lián)立$\left\{\begin{array}{l}{4(2a-n)=3(n+m)}\\{(2a-n)^{2}+{n}^{2}=4{c}^{2}}\\{(2a-n)^{2}+(m+n)^{2}=(2a-m)^{2}}\end{array}\right.$,
化為n=a,代入可得a2=2c2
解得e=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題考查了橢圓的定義及其性質(zhì)、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=axlnx(a≠0,a∈R)
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(1,e)時(shí),不等式$\frac{x-1}{a}$<lnx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點(diǎn)P(x0,3)與點(diǎn)Q(x0,4)分別在橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1與拋物線y2=2px(p>0)上.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是拋物線上的兩點(diǎn),∠AQB的角平分線與x軸垂直,求直線AB在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+1)-kx2+k(k∈R).
(1)若函數(shù)f(x)過P(0,1),求f(x)在點(diǎn)P處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)證明:函數(shù)y=xsinx+cosx在區(qū)間($\frac{3}{2}$π,$\frac{5}{2}$π)內(nèi)是增函數(shù).
(2)證明:函數(shù)f(x)=ex+e-x在[0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一副三角板如圖拼成,AB=AC,∠BAC=90°,∠DBC=30°,∠BCD=90°,將△BCD沿BC折起,使得平面ABC⊥平面BCD.
(1)若AB=$\sqrt{2}$,求四面體A-BCD的體積;
(2)求證:平面ABD⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在底面為梯形的四棱錐S-ABCD中,已知AD∥BC,∠ASC=60°,AD=DC=$\sqrt{2}$,SA=SC=SD=2.
(Ⅰ)求證:AC⊥SD;
(Ⅱ)求三棱錐B-SAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過點(diǎn)B(0,-2).
(1)求此橢圓的方程;
(2)若直線y=kx+1(k≠0)交橢圓C于不同的兩點(diǎn)E,F(xiàn),且E,F(xiàn)都在以B為圓心的圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知xy=2x+y+2(x>1),則x+y的最小值為7.

查看答案和解析>>

同步練習(xí)冊(cè)答案