分析 (1)如圖所示,建立空間直角坐標系.計算$\overrightarrow{EF}•\overrightarrow{MN}$,即可得出直線EF與MN的夾角°.
(2)由MN⊥平面ENF,可取$\overrightarrow{MN}$為平面ENF的一個法向量,設直線MF與平面ENF所成角為θ,利用sinθ=$|cos<\overrightarrow{MF},\overrightarrow{MN}>|$=$\frac{|\overrightarrow{MF}•\overrightarrow{MN}|}{|\overrightarrow{MF}||\overrightarrow{MN}|}$,可得cosθ.
(3)由MN⊥平面ENF,可取$\overrightarrow{MN}$為平面ENF的一個法向量,設平面EFM的法向量為$\overrightarrow{n}$=(x,y,z),利用$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EM}=0}\\{\overrightarrow{n}•\overrightarrow{EF}=0}\end{array}\right.$,可得$\overrightarrow{n}$,利用$cos<\overrightarrow{n},\overrightarrow{MN}>$=$\frac{\overrightarrow{n}•\overrightarrow{MN}}{|\overrightarrow{n}||\overrightarrow{MN}|}$即可得出.
解答 解:(1)如圖所示,建立空間直角坐標系.
A(0,0,0),B(1,0,0),$E(\frac{1}{2},0,1)$,F(xiàn)$(1,\frac{1}{2},0)$,M$(\frac{1}{2},1,1)$,N$(1,\frac{1}{2},1)$.
則$\overrightarrow{EF}$=$(\frac{1}{2},\frac{1}{2},-1)$,$\overrightarrow{MN}$=$(\frac{1}{2},-\frac{1}{2},0)$.
∴$\overrightarrow{EF}•\overrightarrow{MN}$=$\frac{1}{4}-\frac{1}{4}+0$=0,
∴$\overrightarrow{EF}⊥\overrightarrow{MN}$,
∴直線EF與MN的夾角為90°.
(2)$\overrightarrow{MF}$=$(\frac{1}{2},-\frac{1}{2},-1)$.
∵MN⊥平面ENF,∴取$\overrightarrow{MN}$=$(\frac{1}{2},-\frac{1}{2},0)$為平面ENF的一個法向量,
設直線MF與平面ENF所成角為θ,則sinθ=$|cos<\overrightarrow{MF},\overrightarrow{MN}>|$=$\frac{|\overrightarrow{MF}•\overrightarrow{MN}|}{|\overrightarrow{MF}||\overrightarrow{MN}|}$=$\frac{\frac{1}{2}}{\sqrt{\frac{1}{4}+\frac{1}{4}+1}×\sqrt{\frac{1}{4}+\frac{1}{4}}}$=$\frac{\sqrt{3}}{3}$,
∴cosθ=$\frac{\sqrt{6}}{3}$.
(3)∵MN⊥平面ENF,∴取$\overrightarrow{MN}$=$(\frac{1}{2},-\frac{1}{2},0)$為平面ENF的一個法向量,
設平面EFM的法向量為$\overrightarrow{n}$=(x,y,z),$\overrightarrow{EM}$=(0,1,0),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EM}=0}\\{\overrightarrow{n}•\overrightarrow{EF}=0}\end{array}\right.$,則$\left\{\begin{array}{l}{y=0}\\{\frac{1}{2}x+\frac{1}{2}y-z=0}\end{array}\right.$,取$\overrightarrow{n}$=(2,0,1),
則$cos<\overrightarrow{n},\overrightarrow{MN}>$=$\frac{\overrightarrow{n}•\overrightarrow{MN}}{|\overrightarrow{n}||\overrightarrow{MN}|}$=$\frac{1}{\sqrt{5}×\sqrt{\frac{1}{2}}}$=$\frac{\sqrt{10}}{5}$.
點評 本題考查了正方體的性質、線面垂直的性質與判定定理、空間角,考查了空間想象能力、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com