3.若(x-1)100=a0x100+a1x99+…+a100對一切實數(shù)x恒成立,則a3+a97的值為( 。
A.0B.C${\;}_{100}^{3}$C.-2C${\;}_{100}^{3}$D.2100

分析 根據(jù)二項式展開式定理,求出a3、a97的值,再計算a3+a97的值.

解答 解:∵(x-1)100=a0x100+a1x99+…+a100
∴a3=-${C}_{100}^{3}$,
a97=-${C}_{100}^{97}$=-${C}_{100}^{3}$,
∴a3+a97=-2${C}_{100}^{3}$.
故選:C.

點評 本題考查了二項式定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=x2+bx+1滿足f(-x)=f(x+1),若存在實數(shù)t,使得對任意實數(shù)x∈[l,m],都有f(x+t)≤x成立,則實數(shù)m的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),求f(-2008)+f(2009)的值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.A、B是單位圓O上的動點,且A、B分別在第--象限,C是圓0與π軸正半軸的交點,△A0B為等腰直角三角形,記∠AOC=α.
(1)若A點的坐標(biāo)為($\frac{3}{5}$,$\frac{4}{5}$),求$\frac{2sinα•sinα}{co{s}^{2}α+1-2si{n}^{2}α}$的值;
(2)求|BC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在數(shù)列{an}中,a1=1,an+1•an=an-an+1
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=lg$\frac{{a}_{n+2}}{{a}_{n}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C過點A(1,-3),且與圓M:(x+1)2+y2=r2(r>0)關(guān)于直線x-y-2=0對稱.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)B為圓C上一動點,求$\overrightarrow{AB}$•$\overrightarrow{MB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,已知0是?ABCD對角線的交點,給出下列結(jié)論:
①$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{BC}$,
②$\overrightarrow{AB}$+$\overrightarrow{CB}$=$\overrightarrow{AC}$,
③$\overrightarrow{AO}$$+\overrightarrow{OB}$=$\overrightarrow{AB}$;
④$\overrightarrow{CB}$$+\overrightarrow{CD}$=$\overrightarrow{CA}$,
⑤$\overrightarrow{AO}$$+\overrightarrow{CO}$=$\overrightarrow{DO}$$+\overrightarrow{BO}$,
其中正確的結(jié)論是③④⑤.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,四邊形ABCD中,∠ABC=∠ADC=90°,DF⊥AC于點E,交AB于點F.求證:AB•DF=AD•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$\overrightarrow{a}$、$\overrightarrow$不平行,且$\overrightarrow{a}$•$\overrightarrow$≠0,且$\overrightarrow{c}$=$\overrightarrow{a}$-($\frac{\overrightarrow{a}•\overrightarrow{a}}{\overrightarrow{a}•\overrightarrow}$)$\overrightarrow$,則向量$\overrightarrow{a}$與$\overrightarrow{c}$夾角為( 。
A.0B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊答案