5.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式xf(x)<0的解集為(-1,0)∪(1,3).

分析 根據(jù)函數(shù)圖象以及不等式的等價(jià)關(guān)系即可.

解答 解:不等式xf(x)<0等價(jià)為$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$,
則1<x<3,或-1<x<0,
故不等式xf(x)<0的解集是(-1,0)∪(1,3).
故答案為:(-1,0)∪(1,3).

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)不等式的等價(jià)性結(jié)合圖象之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.直線l:x-2y+5=0與圓C:x2+y2=9相交于A、B兩點(diǎn),點(diǎn)D為圓C上異于A、B的一點(diǎn),則△ABD面積的最大值為6+2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.從5個(gè)學(xué)生中(三男兩女)任取兩人參加某活動(dòng)
(1)選出一男一女的概率為多少.
(2)有女生被選中的概率為多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知以M為圓心的圓M:x2+y2-4x+3=0,直線l:x+y-4=0,點(diǎn)A在圓上,點(diǎn)B在直線l上,則|AB|的最小值=$\sqrt{2}-1$,tan∠MBA的最大值=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,
(1)畫出不等式組所表示的平面區(qū)域,并求出該區(qū)域的面積;
(2)求目標(biāo)函數(shù)z=x+2y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(x,-6),若$\overrightarrow a$⊥$\overrightarrow b$,則|$\overrightarrow a$+$\overrightarrow b$|=(  )
A.5B.$5\sqrt{2}$C.6D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)命題p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-4|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;命題Q:函數(shù)f(x)=3x2+2mx+m+$\frac{4}{3}$有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.定義在(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(0,+∞)上的如下函數(shù):
①f(x)=x2;   ②f(x)=2x;    ③f(x)=$\sqrt{x}$;    ④f(x)=lnx.
則其中是“保等比數(shù)列函數(shù)”的f(x)的序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.我們稱函數(shù)f(x)=$\frac{|x|}{|x|-1}$為“囧函數(shù)”,下列是關(guān)于“囧函數(shù)”的四個(gè)命題:
①?x∈(1,+∞),f(x)>1;
②?x1,x2∈(1,+∞),$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$≥0;
③命題p:函數(shù)f(x)=$\frac{|x|}{|x|-1}$的圖象為軸對(duì)稱圖形,命題q:函數(shù)f(x)=$\frac{|x|}{|x|-1}$的圖象存在對(duì)稱中心;則(¬p)∨q為真命題;
④已知0<m<1,若“?x1∈(1,+∞),?x2∈(m,1),使得f(x1)=-f(x2)”為真命題,則m的最大值為$\frac{1}{2}$.
其中的真命題有①④.(寫出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案