分析 首先將向量 $\overrightarrow{MN}$用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示,然后求向量$|\overrightarrow{MN}{|}^{2}$,整理為關(guān)于n的二次函數(shù)的形式求最小值.
解答 解:∵$\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}$,$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AE}+\overrightarrow{AF})$,$\overrightarrow{AN}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,
∴$\overrightarrow{MN}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AE}-\overrightarrow{AF})$=$\frac{1}{2}$[(1-m)$\overrightarrow{AB}$+(1-n)$\overrightarrow{AC}$],
∵m+2n=1,
∴$\overrightarrow{MN}=\frac{1}{2}$[2n$\overrightarrow{AB}$+(1-n)$\overrightarrow{AC}$],
則$|\overrightarrow{MN}{|}^{2}=\frac{1}{4}[4{n}^{2}|\overrightarrow{AB}{|}^{2}+4n(1-n)\overrightarrow{AB}•\overrightarrow{AC}+(1-n)^{2}|\overrightarrow{AC}{|}^{2}]$,
又AB=AC=2$\sqrt{7}$,∠A=120°,
∴$\overrightarrow{AB}•\overrightarrow{AC}$=|AB|×|AC|×cos120°=2$\sqrt{7}×2\sqrt{7}×(-\frac{1}{2})$=-14,
∴$|\overrightarrow{MN}{|}^{2}=7(7{n}^{2}-4n+1)$,n∈(0,1).
∴當(dāng)n=$\frac{2}{7}$時,7(7n2-4n+1)有最小值為于是3
∴$|\overrightarrow{MN}|$的最小值為$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點評 本題考查平面向量數(shù)量積運算,著重考查了平面向量數(shù)量積公式、平面向量基本定理的應(yīng)用,考查二次函數(shù)的最值求法等知識,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
男生 | 女生 | 總計 | |
看營養(yǎng)說明 | 50 | 30 | 80 |
不看營養(yǎng)說明 | 10 | x | y |
總計 | 60 | z | 110 |
P(K2≥K) | 0.10 | 0.05 | 0.01 | 0.005 |
K | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{({\frac{3}{2}})^{-4}},1)$ | B. | $({({\frac{3}{2}})^{-4}},1)$ | C. | $(1,{({\frac{3}{2}})^4})$ | D. | $(1,{({\frac{3}{2}})^4}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{2}$ | B. | 0 | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com