4.平移函數(shù)y=|sinx|的圖象得到函數(shù)y=|cosx|的圖象,以下平移方法錯誤的是(  )
A.向左或向右平移$\frac{π}{4}$個單位B.向右平移$\frac{π}{2}$個單位
C.向左平移$\frac{π}{2}$個單位D.向左或向右平移$\frac{3π}{2}$個單位

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:根據(jù)函數(shù)y=|sinx|的圖象和函數(shù)y=|cosx|的圖象,
可得把函數(shù)y=|sinx|的圖象向左或向右平移$\frac{π}{2}$的奇數(shù)倍個單位,可得函數(shù)y=|cosx|的圖象,
故選:A.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=lg$\frac{x+3}{x-3}$是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x-3)=lg$\frac{x}{x-6}$.
(1)求函數(shù)f(x)的表達式;
(2)判斷并證明函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知向量$\overrightarrow a=({1,0})$,$\overrightarrow b=(cosθ,sinθ)$,$θ∈[{-\frac{π}{4},\frac{π}{2}}]$,則$|{\overrightarrow a+\overrightarrow b}|$的取值范圍是( 。
A.$[0,\sqrt{2}]$B.[0,2]C.[1,2]D.$[\sqrt{2},2]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.下列命題中:
①若a+b不是偶數(shù),則a,b不都是奇數(shù);
②拋物線y=$\frac{1}{4}$x2的焦點坐標是($\frac{1}{16}$,0);
③若p∧q為假命題,則p、q均為假命題;
④若橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的兩焦點為F1、F2,且弦AB過F1點,則△ABF2的周長為20.  
其中正確的命題的序號是①④(填上你認為正確命題的所有序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在如圖的知識結(jié)構圖中:“求簡單函數(shù)的導數(shù)”的“上位”要素有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交a元(2≤a≤5)的管理費,預計當每件產(chǎn)品的售價為x元(9≤x≤11)時,一年的銷售量為(12-x)萬件.
(Ⅰ)求分公司一年的利潤L(萬元)與每件產(chǎn)品的售價x的函數(shù)關系式;
(Ⅱ)當每件產(chǎn)品的售價為多少元時,分公司一年的利潤L最大,并求出L的最大值Q(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}$sin(ωx+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}cos(ωx+\frac{π}{6})$(0<ω<3)的圖象過點A($\frac{π}{4}$,0).
(1)求f(x)的最小正周期;
(2)記g(x)=f(x)+sin2x,若α∈(0,π),且g($\frac{α}{2}$)=0,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知A={x|-2≤x≤5},B={x|m-1≤x≤m+1},B⊆A,則m的取值范圍為[-1,4].

查看答案和解析>>

同步練習冊答案