(12分)如圖所示,橢圓C 的離心率,左焦點(diǎn)為右焦點(diǎn)為,短軸兩個(gè)端點(diǎn)為.與軸不垂直的直線與橢圓C交于不同的兩點(diǎn),記直線、的斜率分別為、,且

(1)求橢圓 的方程;
(2)求證直線 與軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).
(3)當(dāng)弦 的中點(diǎn)落在內(nèi)(包括邊界)時(shí),求直線的斜率的取值。
(1).(2)直線 與軸相交于定點(diǎn)(0,2);(3)。

試題分析:(1)由題意可知:橢圓C的離心率

故橢圓C的方程為.…………………………………………………2分
(2)設(shè)直線的方程為,M、N坐標(biāo)分別為

…………………………………………………4分


將韋達(dá)定理代入,并整理得,解得
∴直線 與軸相交于定點(diǎn)(0,2)………………………………………………7分
(3)由(2)中,其判別式,得.①
設(shè)弦AB的中點(diǎn)P坐標(biāo)為,則
 的中點(diǎn)落在內(nèi)(包括邊界)

將坐標(biāo)代入,整理得 
解得 ②由①②得所求范圍為……………………………………12分
點(diǎn)評(píng):求橢圓的標(biāo)準(zhǔn)方程是解析幾何的基本問(wèn)題,涉及直線與橢圓的位置關(guān)系問(wèn)題,常常運(yùn)用韋達(dá)定理,本題屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線被曲線截得的弦長(zhǎng)為           ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的焦點(diǎn)為F1.F2,點(diǎn)M在雙曲線上且,則點(diǎn)M到x軸的距離為   (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過(guò)點(diǎn)
(1)求拋物線C的標(biāo)準(zhǔn)方程
(2)直線過(guò)拋物線的焦點(diǎn)F,與拋物線交于A、B兩點(diǎn),線段AB的中點(diǎn)M的橫坐標(biāo)為3,求弦長(zhǎng)以及直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求過(guò)兩直線的交點(diǎn),且滿足下列條件的直線的方程.
(Ⅰ)和直線垂直;
(Ⅱ)在軸,軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

動(dòng)圓經(jīng)過(guò)定點(diǎn),且與直線相切。
(1)求圓心的軌跡方程;
(2)直線過(guò)定點(diǎn)與曲線交于、兩點(diǎn):
①若,求直線的方程;
②若點(diǎn)始終在以為直徑的圓內(nèi),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的左焦點(diǎn)為,直線與橢圓相交于點(diǎn),當(dāng)的周長(zhǎng)最大時(shí),的面積是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知橢圓經(jīng)過(guò)點(diǎn),且其右焦點(diǎn)與拋物線的焦點(diǎn)F重合.
(Ⅰ)求橢圓的方程;
(II)直線經(jīng)過(guò)點(diǎn)與橢圓相交于A、B兩點(diǎn),與拋物線相交于C、D兩點(diǎn).求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線上的焦點(diǎn),點(diǎn)在拋物線上,點(diǎn),則要使的值最小的點(diǎn)的坐標(biāo)為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案