15.化簡$\overrightarrow{AC}$+$\overrightarrow{DB}$+$\overrightarrow{CD}$-$\overrightarrow{AB}$得( 。
A.$\overrightarrow{AB}$B.$\overrightarrow{DA}$C.$\overrightarrow{BC}$D.$\overrightarrow 0$

分析 利用向量的三角形法則即可得出.

解答 解:$\overrightarrow{AC}$+$\overrightarrow{DB}$+$\overrightarrow{CD}$-$\overrightarrow{AB}$=$\overrightarrow{AC}+$$\overrightarrow{CB}$-$\overrightarrow{AB}$=$\overrightarrow{AB}-\overrightarrow{AB}$=$\overrightarrow{0}$,
故選:D.

點(diǎn)評 本題考查了向量的三角形法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x|x-a|,a∈R,g(x)=x2-1.
(1)當(dāng)a=1時,解不等式f(x)≥g(x);
(2)記函數(shù)f(x)在區(qū)間[0,2]上的最大值為F(a),求F(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知經(jīng)過點(diǎn)P(1,$\frac{3}{2}$)的兩個圓C1,C2都與直線l1:y=$\frac{1}{2}$x,l2:y=2x相切,則這兩圓的圓心距C1C2等于$\frac{4\sqrt{5}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若規(guī)定$|\begin{array}{l}{a}&\\{c}&zydelze\end{array}|$=ad-bc,則$|\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}|$=_-2,不等式1<$|\begin{array}{l}{2x}&{1}\\{1}&{x}\end{array}|$<7的解集為(-2,-1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=ax2+bx+c(a>0,b,c∈R)的圖象過點(diǎn)(1,0),對任意x1∈[0,2],存在x2∈[0,2],使得f(x1)+f(x2)>$\frac{3}{2}$a,則$\frac{a}$的取值范圍是(-∞,-4+$\sqrt{2}$)∪(-$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-3x+1
(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)求曲線在點(diǎn)(0,f(0))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知復(fù)數(shù)z=(k2-3k-4)+(k-1)i(k∈R):
(1)若復(fù)數(shù)z在復(fù)平面上對應(yīng)的點(diǎn)位于第二象限,求k的取值范圍;
(2)若復(fù)數(shù)z•i∈R,求復(fù)數(shù)z的模|z|?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列幾何體中,正視圖、側(cè)視圖和俯視圖都相同的是(  )
A.圓柱B.圓錐C.D.三棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\overrightarrow{m}$=(2,-1),$\overrightarrow{n}$=(-1,t),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,則實(shí)數(shù)t的值等于-2.

查看答案和解析>>

同步練習(xí)冊答案