3.下列判斷正確的是( 。
A.若p是真命題,則:“p且q”一定為真
B.若“p且q”是假命題,則:p一定為假
C.若“p且q”是真命題,則:p一定為真
D.若p是假命題,則:“p且q”不一定為假

分析 對各個選項逐一判斷即可.

解答 解:若p是真命題,則:“p且q”不一定為真,錯誤;
若“p且q”是假命題,則:p不一定為假,錯誤;
若“p且q”是真命題,則:p一定為真,正確;
若p是假命題,則:“p且q”一定為假,D錯誤;
故選:C.

點評 本題考查復(fù)合命題的真假,按照真值表判斷即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.${(\frac{1-i}{1+i})^4}$=( 。
A.-1B.1C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)集合A={x|-1≤x≤3},B=$\left\{{x\left|{\frac{2a}{x-a}>1}\right.}\right\}$,若A∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=|x+1|+|2-x|的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={a1,a2,…,an}(n>2),令TA={x|x=ai+aj,1≤i<j≤n},card(TA)表示集合TA中元素的個數(shù).關(guān)于card(TA)有下列兩個命題
①若a1,a2,…,an(n>2)可構(gòu)成公差不為0的等差數(shù)列,則card(TA)=2n-3;
②若a1,a2,…,an(n>2)可構(gòu)成公比不為1的等比數(shù)列,則$card({T_A})=\frac{1}{2}n(n-1)$.
其中,正確的是(  )
A.B.C.①②D.都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓 x2+y2-4x+2y-3=0和圓外一點M ( 4,-8 ).
(Ⅰ) 過M作圓的切線,切點為C、D,求切線長及CD所在直線的方程;
(Ⅱ) 過M作圓的割線交圓于A,B兩點,若|AB|=4,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知A(cosx,0),B(0,1-cosx),則$|{\overrightarrow{AB}}|$的最小值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)i是虛數(shù)單位,2、2i、cosα+isinα(0<α<π)分別對應(yīng)復(fù)平面內(nèi)的點A、B、C,O為坐標(biāo)原點,|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{7}$.
(1)求α的值;
(2)求向量$\overrightarrow{OA}$與$\overrightarrow{AC}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知x,y∈R,x2+y2=9,求T=$\sqrt{3+x}$+$\sqrt{3-y}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案