12.設(shè)i是虛數(shù)單位,2、2i、cosα+isinα(0<α<π)分別對應(yīng)復(fù)平面內(nèi)的點(diǎn)A、B、C,O為坐標(biāo)原點(diǎn),|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{7}$.
(1)求α的值;
(2)求向量$\overrightarrow{OA}$與$\overrightarrow{AC}$的夾角.

分析 (1)由題意和復(fù)數(shù)的幾何意義可得點(diǎn)的坐標(biāo),進(jìn)而可得$\overrightarrow{OA}$+$\overrightarrow{OC}$的坐標(biāo),由模長公式可得cosα,可得答案;
(2)α求出后,可以得到向量$\overrightarrow{OA}$與$\overrightarrow{AC}$的坐標(biāo).

解答 解:(1)由題意可得O(0,0),A(2,0),B(0,2),C(cosα,sinα),
∴$\overrightarrow{OA}$+$\overrightarrow{OC}$=(2+cosα,sinα),∴(2+cosα)2+sin2α=7,
∴4cosα-2=0,解得cosα=$\frac{1}{2}$,結(jié)合0<α<π可得α=$\frac{π}{3}$;
(2)$\overrightarrow{OA}$=(2,0);$\overrightarrow{OC}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$);
所以:$\overrightarrow{AC}$=(-$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$);
cos<$\overrightarrow{OA}$,$\overrightarrow{AC}$>=$\frac{-3}{2×\sqrt{3}}$=-$\frac{\sqrt{3}}{2}$;
所以<$\overrightarrow{OA}$,$\overrightarrow{AC}$>=$\frac{5}{6}π$.

點(diǎn)評 本題考查平面向量的模長公式和夾角公式,涉及復(fù)數(shù)的幾何意義,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)在(0,+∞)上是增函數(shù)的是(  )
A.$y={({\frac{1}{3}})^x}$B.y=-2x+5C.y=lnxD.y=$\frac{3}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列判斷正確的是( 。
A.若p是真命題,則:“p且q”一定為真
B.若“p且q”是假命題,則:p一定為假
C.若“p且q”是真命題,則:p一定為真
D.若p是假命題,則:“p且q”不一定為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\overrightarrow a,\overrightarrow b$是(空間)非零向量,構(gòu)造向量集合$P=\left\{{\left.{\overrightarrow p}\right|\overrightarrow p=t\overrightarrow a+\overrightarrow b,t∈{R}}\right\}$,記集合P中模最小的向量$\overrightarrow p$為$T(\overrightarrow a,\overrightarrow b)$.
(Ⅰ)對于$T(\overrightarrow a,\overrightarrow b)=t\overrightarrow a+\overrightarrow b$,求t的值(用$\overrightarrow a,\overrightarrow b$表示);
(Ⅱ)求證:$T(\overrightarrow a,\overrightarrow b)⊥\overrightarrow a$;
(Ⅲ)若$|\overrightarrow{a_1}|=|\overrightarrow{a_2}|=1$,且$<\overrightarrow{a_1},\overrightarrow{a_2}>=\frac{π}{3}$,構(gòu)造向量序列${\overrightarrow a_n}=T(\overrightarrow{{a_{n-2}}},\overrightarrow{{a_{n-1}}})$,其中n∈N*,n≥3,請直接寫出$|{\overrightarrow{a_n}}|$的值(用n表示,其中n≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定義在R上的偶函數(shù)f(x)滿足f(1)=1,且對于任意的x>0,f′(x)<x恒成立,則不等式f(x)<$\frac{1}{2}$x2+$\frac{1}{2}$的解集為( 。
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|x2+4x=0},B={x|x2+2(a+1)+a2-1=0}
(1)若A∪B=A∩B,求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.求值:$\frac{{({1+tan{{22}°}})({1+tan{{23}°}})}}{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=$\sqrt{-{x}^{2}+x+2}$的單調(diào)遞減區(qū)間是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等比數(shù)列{an}中,已知a1+a2+a3=8,a4+a5+a6=-1,則公比q的值為(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.±$\frac{1}{2}$D.±2

查看答案和解析>>

同步練習(xí)冊答案