分析 由題意,函數(shù)的周期為2.x∈[-1,0]時,f(x)=x,分k的奇數(shù)、偶數(shù)討論,即可得出結(jié)論.
解答 解:由題意,函數(shù)的周期為2.x∈[-1,0]時,f(x)=x
k=2n時,x∈[k,k+1],x-k∈[0,1],f(x)=f(x-k)=x-k;
k=2n-1,x-k-1∈[-1,0],f(x)=f(x-k-1)=x-k-1;
∴f(x)=$\left\{\begin{array}{l}{x-k,k是偶數(shù)}\\{x-k-1,k是奇數(shù)}\end{array}\right.$.
故答案為:f(x)=$\left\{\begin{array}{l}{x-k,k是偶數(shù)}\\{x-k-1,k是奇數(shù)}\end{array}\right.$.
點評 本題主要考查函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,函數(shù)的周期性,利用函數(shù)奇偶性和周期性是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | 2016 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com