5.已知球的表面積為1680cm2,求與球心的距離為9cm的截面的面積.

分析 利用球的表面積為1680cm2,求出球的半徑,可得與球心的距離為9cm的截面圓的半徑,即可求與球心的距離為9cm的截面的面積.

解答 解:∵球的表面積為1680cm2,
∴4πR2=1680,
∴R2=$\frac{420}{π}$,
設(shè)與球心的距離為9cm的截面圓的半徑為r,則r2=R2-81=$\frac{420}{π}$-81,
∴截面的面積為(420-81π)cm2

點(diǎn)評 本題考查球的表面積,考查勾股定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}滿足a3+a9=2,則a6=( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖點(diǎn)P在平面區(qū)域$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}\right.$上,點(diǎn)Q在曲線x2+(y+$\frac{3}{2}$)2=1上,那么|PQ|的最小值為( 。
A.$\sqrt{5}$-1B.$\frac{4}{\sqrt{5}}$-1C.2$\sqrt{2}$-1D.$\frac{\sqrt{13}}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列敘述正確的有①④(將你認(rèn)為所有可能出現(xiàn)的情況的代號填入橫線上).
①集合{0,1,2}的非空真子集有6個(gè);
②集合A={1,2,3,4,5,6},集合B={y|y≤5,y∈N*},若f:x→y=|x-1|,則對應(yīng)關(guān)系f是從集合A到集合B的映射;
③函數(shù)y=tanx的對稱中心為(kπ,0)(k∈Z);
④函數(shù)f(x)對任意實(shí)數(shù)x都有f(x)=-$\frac{1}{f(x-2)}$恒成立,則函數(shù)f(x)是周期為4的周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知sin200°=a,則tan160°等于( 。
A.-$\frac{a}{\sqrt{1-{a}^{2}}}$B.$\frac{a}{\sqrt{1-{a}^{2}}}$C.-$\frac{\sqrt{1-{a}^{2}}}{a}$D.$\frac{\sqrt{1-{a}^{2}}}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知{an}為等差數(shù)列,且a2=-1,a5=8.求
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{2n•an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+1,}&{x>0}\\{a,}&{x=0}\\{g(2x),}&{x<0}\end{array}\right.$為奇函數(shù),則a=0,f(g(-2))=-25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知奇函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[0,1]時(shí).,f(x)=x,則當(dāng)x∈[k,k+1](k∈Z)時(shí),函數(shù)f(x)的解析式是f(x)=$\left\{\begin{array}{l}{x-k,k是偶數(shù)}\\{x-k-1,k是奇數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線y=xex+1在點(diǎn)(0,1)處的切線方程是( 。
A.x-y+1=0B.2x-y+1=0C.x-y-1=0D.x-2y+2=0

查看答案和解析>>

同步練習(xí)冊答案