6.cosx-$\sqrt{3}$sinx可以寫成2sin(x+φ)的形式,其中0≤φ<2π,則φ=$\frac{5π}{6}$.

分析 利用兩角和公式對(duì)等號(hào)左邊進(jìn)行化簡(jiǎn),最后根據(jù)φ的范圍求得φ.

解答 解:cosx-$\sqrt{3}$sinx=2($\frac{1}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx)=2sin(x+$\frac{5π}{6}$)=2sin(x+φ),
∵0≤φ<2π,
∴φ=$\frac{5π}{6}$,
故答案為:$\frac{5π}{6}$.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用.考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)知識(shí)的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知命題P:?x∈[1,2],x2-2x-1>0,則P的否定是( 。
A.P:?x∈(-∞,1)∪(2,+∞),x2-2x-1>0B.P:?x∈[1,2],x2-2x-1>0
C.P:?x∈(-∞,1)∪(2,+∞),x2-2x-1≤0D.P:?x∈[1,2],x2-2x-1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.據(jù)報(bào)道,全國(guó)很多省市將英語(yǔ)考試作為高考改革的重點(diǎn),一時(shí)間“英語(yǔ)考試該如何改”引起廣泛關(guān)注.為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語(yǔ)改革的看法,某媒體在該地區(qū)選擇了3000人進(jìn)行調(diào)查,就“是否取消英語(yǔ)聽(tīng)力”的問(wèn)題進(jìn)行了問(wèn)卷調(diào)查統(tǒng)計(jì),結(jié)果如表:
態(tài)度
調(diào)查人群
應(yīng)該取消應(yīng)該保留無(wú)所謂
在校學(xué)生2100人120人y人
社會(huì)人士500人x人z人
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.06.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取300人進(jìn)行問(wèn)卷訪談,問(wèn)應(yīng)在持“無(wú)所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴萜魃戏降娜肟谔,小球自由下落,小球在下落的過(guò)程中,將遇到黑色障礙物3次,最后落入A區(qū)域或B區(qū)域中,已知小球每次遇到障礙物時(shí),向左、右兩邊下落的概率都是$\frac{1}{2}$.
(1)分別求出小球落入A區(qū)域和B區(qū)域中的概率;
(2)若在容器入口處依次放入3個(gè)小球,記X為落入B區(qū)域中的小球個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)兩條漸近線l1,l2與拋物線y2=-4x的準(zhǔn)線1圍成區(qū)域Ω,對(duì)于區(qū)域Ω(包含邊界),對(duì)于區(qū)域Ω內(nèi)任意一點(diǎn)(x,y),若$\frac{y-x-2}{x+3}$的最大值小于0,則雙曲線C的離心率e的取值范圍為(1,$\sqrt{10}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.對(duì)于函數(shù)f(x)和實(shí)數(shù)M,若存在m,n∈N+,使f(m)+f(m+1)+f(m+2)+…+f(m+n)=M成立,則稱(m,n)為函數(shù)f(x)關(guān)于M的一個(gè)“生長(zhǎng)點(diǎn)”.若(1,2)為函數(shù)f(x)=cos($\frac{π}{2}$x+$\frac{π}{3}$)關(guān)于M的一個(gè)“生長(zhǎng)點(diǎn)”,則M=-$\frac{1}{2}$;若f(x)=2x+1,M=105,則函數(shù)f(x)關(guān)于M的“生長(zhǎng)點(diǎn)”共有3個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.命題:“?x∈R,sinx+cosx>2”的否定是?x∈R,sinx+cosx≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.對(duì)于實(shí)數(shù)a和b,定義運(yùn)算a*b,運(yùn)算原理如圖所示,若(1+m)*(1-m)=2,則實(shí)數(shù)m=0,或1,或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)(x,y)滿足約束條件$\left\{\begin{array}{l}{x+|y|≤1}\\{x≥0}\end{array}\right.$,則z=y-ax取得最大(。┲档淖顑(yōu)解不唯一,則實(shí)數(shù)a的值為(  )
A.$\frac{1}{2}$或-1B.2或-1C.2或1D.1或-1

查看答案和解析>>

同步練習(xí)冊(cè)答案