分析 用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AE},\overrightarrow{AF}$,根據(jù)數(shù)量級列出方程得出λ,μ的關系,利用基本不等式解出最小值.
解答 解:$\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}$=$\overrightarrow{AD}+λ\overrightarrow{AB}$,$\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{BF}$=$\overrightarrow{AB}+μ\overrightarrow{AD}$.
∵$\overrightarrow{AB}⊥\overrightarrow{AD}$,∴$\overrightarrow{AB}•\overrightarrow{AD}=0$.
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AD}+λ\overrightarrow{AB}$)•($\overrightarrow{AB}+μ\overrightarrow{AD}$)=λ${\overrightarrow{AB}}^{2}$+μ${\overrightarrow{AD}}^{2}$=2.
∴4λ+μ=2.
∴$\frac{1}{λ}$+$\frac{1}{μ}$=$\frac{2λ+\frac{1}{2}μ}{λ}+\frac{2λ+\frac{1}{2}μ}{μ}$=$\frac{5}{2}$+$\frac{μ}{2λ}+\frac{2λ}{μ}$≥$\frac{5}{2}$+2=$\frac{9}{2}$.
當且僅當$\frac{μ}{2λ}=\frac{2λ}{μ}$即μ=2λ時取等號.
故答案為$\frac{9}{2}$.
點評 本題考查了平面向量線性運算的幾何意義,數(shù)量級運算,基本不等式的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(7)<f(6.5)<f(4.5) | B. | f(7)<f(4.5)<f(6.5) | C. | f(4.5)<f(6.5)<f(7) | D. | f(4.5)<f(7)<f(6.5) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a>b,c>d,則a-d<b-c | B. | 若ac2>bc2,則a>b | ||
C. | 若c<b<a,且ac<0,則cb2<ab2 | D. | 若a>b,則lg(a-b)>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3-2$\sqrt{2}$ | B. | 3 | C. | 2$\sqrt{2}$ | D. | 3$+2\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com