10.已知定義在R上的函數(shù)f(x)滿足條件:
①對(duì)任意的x∈R,都有f(x+4)=f(x);
②函數(shù)f(x+2)的關(guān)于y軸對(duì)稱
③對(duì)任意的x1,x2∈[0,2],且x1<x2,都有f(x1)<f(x2).
則下列結(jié)論正確的是( 。
A.f(7)<f(6.5)<f(4.5)B.f(7)<f(4.5)<f(6.5)C.f(4.5)<f(6.5)<f(7)D.f(4.5)<f(7)<f(6.5)

分析 根據(jù)條件判斷函數(shù)的周期性和對(duì)稱性,利用函數(shù)對(duì)稱性,周期性和單調(diào)性之間的關(guān)系將函數(shù)值進(jìn)行轉(zhuǎn)化比較即可得到結(jié)論.

解答 解:∵對(duì)任意的x∈R,都有f(x+4)=f(x);
∴函數(shù)是4為周期的周期函數(shù),
∵函數(shù)f(x+2)的關(guān)于y軸對(duì)稱
∴函數(shù)函數(shù)f(x)的關(guān)于x=2對(duì)稱,
∵對(duì)任意的x1,x2∈[0,2],且x1<x2,都有f(x1)<f(x2).
∴此時(shí)函數(shù)在[0,2]上為增函數(shù),
則函數(shù)在[2,4]上為減函數(shù),
則f(7)=f(3),
f(6.5)=f(2,5),
f(4.5)=f(0.5)=f(3.5),
則f(3.5)<f(3)<f(2.5),
即f(4.5)<f(7)<f(6.5),
故選:D

點(diǎn)評(píng) 本題主要考查與函數(shù)有關(guān)的命題的真假判斷,根據(jù)條件判斷函數(shù)的周期性和對(duì)稱性,和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若集合M={x∈R|x2-4x<0},集合N={0,4},則M∪N=( 。
A.[0,4]B.[0,4)C.(0,4]D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知等比數(shù)列{an}的公比為$-\frac{1}{2}$,則$\frac{{{a_1}+{a_3}+{a_5}}}{{{a_2}+{a_4}+{a_6}}}$的值是( 。
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)的定義域?yàn)镈,若同時(shí)滿足以下兩個(gè)條件:
①函數(shù)f(x)在D內(nèi)是單調(diào)遞減函數(shù);
②存在區(qū)間[a,b]∈D,使函數(shù)f(x)在[a,b]內(nèi)的值域是[-b,-a].
那么稱函數(shù)f(x)為“W函數(shù)”.
已知函數(shù)f(x)=-$\sqrt{x}$-k為“W函數(shù)”.實(shí)數(shù)k的取值范圍是(-$\frac{1}{4}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,過(guò)點(diǎn)F的直線與橢圓交于點(diǎn)A,B,若AB中點(diǎn)為(1,-$\frac{1}{2}$),且直線AB的傾斜角為45°,則橢圓方程為( 。
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1C.$\frac{2{x}^{2}}{9}$+$\frac{4{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$+$\frac{2{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow$=(3cosβ,3sinβ),$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則直線xcosα-ysinα=$\frac{1}{2}$與(x-cosβ)2+(y+sinβ)2=$\frac{1}{2}$的位置關(guān)系是( 。
A.相切B.相交C.相離D.隨α,β的值而定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,AB=3,AC=1,且∠BAC=$\frac{2π}{3}$,點(diǎn)D是邊BC上一點(diǎn);
(Ⅰ)若點(diǎn)D是BC的中點(diǎn),求AD的值;
(Ⅱ)若點(diǎn)D是角A的平分線與BC的交點(diǎn),求AD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.用二項(xiàng)式定理證明:32n+2-8n-9能被64整除(n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.四邊形ABCD為矩形,AB=2,AD=1,$\overrightarrow{DE}$=$λ\overrightarrow{DC}$,$\overrightarrow{BF}$=μ$\overrightarrow{BC}$(0≤λ,μ≤1).若$\overrightarrow{AE}$•$\overrightarrow{AF}$=2,則$\frac{1}{λ}$+$\frac{1}{μ}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案