A. | 等腰直角三角形 | B. | 等腰鈍角三角形 | ||
C. | 等邊三角形 | D. | 不存在這樣的三角形 |
分析 由 sinA=2sinBcosC,可得sin(B-C)=0,B=C,結(jié)合正弦定理及已知等式可得a=b=c,從而得解.
解答 解:由 a=2bcosC,
可得:sinA=2sinBcosC,
可得 sin(B+C)=2sinBcosC,
即 sinBcosC+cosBsinC=2sinBcosC,
∴sin(B-C)=0,
∴B=C,
故△ABC為等腰三角形.
在△ABC中,∵2sin2A=sin2B+sin2C,
∴2sin2A=2sin2B=2sin2C,
∴由正弦定理可得a=b=c,
綜上,△ABC為等邊三角形.
故選:C.
點(diǎn)評(píng) 本題主要考查正弦定理、兩角和的正弦公式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 當(dāng)x>0且x≠1時(shí),lgx+$\frac{1}{lgx}$≥2 | B. | 2x+2-x≥2 | ||
C. | 當(dāng)x≥2時(shí),x+$\frac{1}{x}$的最小值2 | D. | 當(dāng)x>0時(shí),sinx+$\frac{1}{sinx}$≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{7}$ | B. | $\frac{6}{7}$ | C. | $\frac{2\sqrt{6}}{7}$ | D. | $\frac{\sqrt{13}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | a1 | 25 |
學(xué)習(xí)積極性一般 | a2 | 19 | a4 |
合計(jì) | 24 | a3 | 50 |
P(x2≥k) | 0.050 | 0.010 | 0.001 | x2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$ |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com