【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)過(guò)橢圓左焦點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),直線(xiàn)過(guò)坐標(biāo)原點(diǎn)且直線(xiàn)與的斜率互為相反數(shù),直線(xiàn)與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線(xiàn)的斜率為,直線(xiàn)的斜率為.證明: 為定值.
【答案】(1);(2)定值為
【解析】試題分析:(Ⅰ)根據(jù)橢圓的離心率為,且過(guò)點(diǎn),結(jié)合性質(zhì) ,列出關(guān)于 、 、的方程組,求出 、 、,即可得結(jié)果;(Ⅱ)設(shè),聯(lián)立,消去得,,利用斜率公式以及韋達(dá)定理,化簡(jiǎn)可得則,所以為定值.
試題解析:(Ⅰ)由題可得,解得.
所以橢圓的方程為.
(Ⅱ)由題知直線(xiàn)斜率存在,設(shè).
聯(lián)立,消去,
由題易知恒成立,由韋達(dá)定理得,
因?yàn)?/span>與斜率相反且過(guò)原點(diǎn),
設(shè), ,
聯(lián)立,
消去得,
由題易知恒成立,
由韋達(dá)定理得,
則
,所以為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點(diǎn)為棱上一點(diǎn),若平面,,求實(shí)數(shù)的值;
(2)求點(diǎn)B到平面SAD的距離.
【答案】(1);(2)
【解析】試題分析:(1)由平面,可證,進(jìn)而證得四邊形為平行四邊形,根據(jù),可得;
(2)利用等體積法可求點(diǎn)到平面的距離.
試題解析:((1)因?yàn)?/span>平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點(diǎn).
因?yàn)?/span>,
.
(2)因?yàn)?/span> , ,
所以平面,
又因?yàn)?/span>平面,
所以平面平面,
平面平面,
在平面內(nèi)過(guò)點(diǎn)作直線(xiàn)于點(diǎn),則平面,
在和中,
因?yàn)?/span>,所以,
又由題知,
所以,
由已知求得,所以,
連接BD,則,
又求得的面積為,
所以由點(diǎn)B 到平面的距離為.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.
(1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿(mǎn)足以下表格:
日均派送單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻數(shù)(天) | 20 | 30 | 20 | 20 | 10 |
回答下列問(wèn)題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列的公比,前項(xiàng)和為,且滿(mǎn)足.,,分別是一個(gè)等差數(shù)列的第1項(xiàng),第2項(xiàng),第5項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和;
(3)若,的前項(xiàng)和為,且對(duì)任意的滿(mǎn)足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線(xiàn)在處的切線(xiàn)經(jīng)過(guò)點(diǎn).
(1)證明: ;
(2)若當(dāng)時(shí), ,求的取值范圍.
【答案】(1)證明見(jiàn)解析;(2) .
【解析】試題分析:(1)先根據(jù)導(dǎo)數(shù)幾何意義得切線(xiàn)斜率為,再根據(jù)切線(xiàn)過(guò)點(diǎn),解得導(dǎo)數(shù)可得導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變號(hào)規(guī)律可得函數(shù)單調(diào)性,根據(jù)函數(shù)單調(diào)性可得函數(shù)最小值為0,即得結(jié)論,(2)先化簡(jiǎn)不等式為,分離得,再利用導(dǎo)數(shù)求函數(shù)單調(diào)性,利用羅伯特法則求最大值,即得的取值范圍.
試題解析:(1)曲線(xiàn)在處的切線(xiàn)為,即
由題意得,解得
所以
從而
因?yàn)楫?dāng)時(shí), ,當(dāng)時(shí), .
所以在區(qū)間上是減函數(shù),區(qū)間上是增函數(shù),
從而.
(2)由題意知,當(dāng)時(shí), ,所以
從而當(dāng)時(shí), ,
由題意知,即,其中
設(shè),其中
設(shè),即,其中
則,其中
(1)當(dāng)時(shí),因?yàn)?/span>時(shí), ,所以是增函數(shù)
從而當(dāng)時(shí), ,
所以是增函數(shù),從而.
故當(dāng)時(shí)符合題意.
(2)當(dāng)時(shí),因?yàn)?/span>時(shí), ,
所以在區(qū)間上是減函數(shù)
從而當(dāng)時(shí),
所以在上是減函數(shù),從而
故當(dāng)時(shí)不符合題意.
(3)當(dāng)時(shí),因?yàn)?/span>時(shí), ,所以是減函數(shù)
從而當(dāng)時(shí),
所以是減函數(shù),從而
故當(dāng)時(shí)不符合題意
綜上的取值范圍是.
【題型】解答題
【結(jié)束】
22
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn): .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.
(1)求曲線(xiàn)的極坐標(biāo)方程;
(2)射線(xiàn)()與曲線(xiàn)的異于極點(diǎn)的交點(diǎn)為,與曲線(xiàn)的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,選項(xiàng)正確的是( )
A. 在回歸直線(xiàn)中,變量時(shí),變量的值一定是15
B. 兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)就越接近于1
C. 在殘差圖中,殘差點(diǎn)比較均勻落在水平的帶狀區(qū)域中即可說(shuō)明選用的模型比較合適,與帶狀區(qū)域的寬度無(wú)關(guān)
D. 若某商品的銷(xiāo)售量(件)與銷(xiāo)售價(jià)格(元/件)存在線(xiàn)性回歸方程為,當(dāng)銷(xiāo)售價(jià)格為10元時(shí),銷(xiāo)售量為100件左右
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是( 。
A. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)
B. 函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)
C. 函數(shù)的最小正周期為
D. 當(dāng)時(shí),函數(shù)的圖象與直線(xiàn)圍成的封閉圖形面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中, ,且平面, 為棱的中點(diǎn).
(1)求證: ∥平面;
(2)求證:平面平面;
(3)當(dāng)四面體的體積最大時(shí),判斷直線(xiàn)與直線(xiàn)是否垂直,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是的中點(diǎn).
(1)若,求向量與向量的夾角的余弦值;
(2)若是線(xiàn)段上任意一點(diǎn),且,求的最小值;
(3)若點(diǎn)是內(nèi)一點(diǎn),且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】m為何值時(shí),.
(1)有且僅有一個(gè)零點(diǎn);
(2)有兩個(gè)零點(diǎn)且均比-1大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com