13.已知命題p:?x∈R,|x|<0,則¬p是( 。
A.?x∈R,|x|≥0B.?x∈R,|x|>0C.?x∈R,|x|≥0D.?x∈R,|x|<0

分析 直接利用特稱命題的否定是全程命題,寫出結(jié)果即可.

解答 解:因為特稱命題的否定是全程命題,所以,命題p:?x∈R,|x|<0,則¬p是:?x∈R,|x|≥0.
故選:C.

點評 本題考查命題的否定,特稱命題與全程命題的否定關(guān)系,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(0,$\sqrt{2}$),離心率為$\frac{\sqrt{6}}{3}$,點O為坐標(biāo)原點.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)過左焦點F任作一直線l,交橢圓E于P、Q兩點.
  (i)求$\overrightarrow{OP}$•$\overrightarrow{OQ}$的取值范圍;
  (ii)若直線l不垂直于坐標(biāo)軸,記弦PQ的中點為M,過F作PQ的垂線FN交直線OM于點N,證明:點N在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓心為C的圓經(jīng)過點A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若P(x,y)是圓C上的動點,求3x-4y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,△ABC的外接圓為⊙O,延長CB至Q,再延長QA至P,且QA為⊙O的切線
(1)求證:QC2-QA2=BC•QC
(2)若AC恰好為∠BAP的平分線,AB=10,AC=15,求QA的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“?n∈Z,n∈Q”的否定是( 。
A.?n0∈Z,n0∉QB.?n0∉Z,n0∈QC.?n0∈Z,n0∉QD.?n0∉Z,n0∈Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是一個幾何體的三視圖,其俯視圖是邊長為3的正三角形,則該幾何體的表面積為( 。
A.36B.36$+\frac{9\sqrt{3}}{4}$C.36$+\frac{9\sqrt{3}}{2}$D.18$+\frac{9\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a>b>0,c≠0,則下列不等式恒成立的為(  )
A.$\frac{1}{a}$>$\frac{1}$B.ac>bcC.$\sqrt{a}$>$\sqrt$D.$\frac{a}{c}$>$\frac{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知F1(0,-1),F(xiàn)2(0,1)為橢圓Γ:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的兩個焦點,過F1作兩條傾斜角互補(bǔ)的直線l1,l2,l1,l2分別與橢圓Γ相交于A,B,C,D四點,且△ABF2的周長為8.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)求陰影部分S的最大值;
(Ⅲ)求證:直線AD與直線BC的交點是定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=loga(-x-1)+loga(x+3),其中a>0且a≠1.
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案