3.已知函數(shù)f(x)=loga(-x-1)+loga(x+3),其中a>0且a≠1.
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的值域.

分析 (1)根據(jù)函數(shù)成立的條件即可求函數(shù)f(x)的定義域;
(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及符合函數(shù)的值域的求法,即可得到答案,需要分類討論.

解答 解:(1)要使函數(shù)有意義,則$\left\{\begin{array}{l}{-x-1>0}\\{x+3>0}\end{array}\right.$.
解得:-3<x<-1.
即f(x)的為定義域(-3,-1),
(2)f(x)=loga(-x-1)+loga(x+3)=loga[-(x+1)(x+3)],
令t=-(x+1)(x+3),
∵-3<x<-1,
∴0<t≤1,
當(dāng)0<a<1時(shí),值域?yàn)閇0,+∞),
當(dāng)a>1時(shí),值域?yàn)椋?∞,0].

點(diǎn)評(píng) 本題主要考查對(duì)數(shù)函數(shù)性質(zhì)的綜合考查,根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性是解決本題的關(guān)鍵.注意要對(duì)a進(jìn)行分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,|x|<0,則¬p是( 。
A.?x∈R,|x|≥0B.?x∈R,|x|>0C.?x∈R,|x|≥0D.?x∈R,|x|<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果a>b>0,那么下列不等式成立的是( 。
A.a2>abB.ab<b2C.$\frac{1}{a}$>$\frac{1}$D.$\frac{a}$>$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個(gè)正三棱錐的正視圖及俯視圖如圖所示,則該三棱錐的左視圖的面積為(  )
A.6B.$\frac{3\sqrt{3}}{2}$C.$\frac{2\sqrt{21}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.曲線C經(jīng)過伸縮變換φ:$\left\{\begin{array}{l}{2x′=x}\\{y′=3y}\end{array}\right.$后得到曲線C′:y′=6x′2,則曲線c的方程為x2=2y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知某幾何體的三視圖如上圖所示,則該幾何體的體積為( 。
A.3+$\frac{10}{3}$πB.4+$\frac{11}{3}$πC.3+$\frac{11}{3}$πD.4+$\frac{8}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若對(duì)于所有的m∈R,均有M∩N≠∅,則b的取值范圍是( 。
A.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}})$C.$[{-\frac{{\sqrt{6}}}{2},\frac{{\sqrt{6}}}{2}}]$D.$[{-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=(m+2)x2+mx+1為偶函數(shù),則f(x)在區(qū)間(1,+∞)上是( 。
A.先增后減B.先減后增C.減函數(shù)D.增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知二面角α-BC-β的大小為θ(0≤θ≤$\frac{π}{2}$).在面α內(nèi)有△ABC,它在面β內(nèi)的射影為△A′BC.它們的面積分別為S,S′,求證:cosθ=$\frac{S′}{S}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案