13.如圖所示,△ABC內(nèi)接于圓O,過點(diǎn)A的切線交BC的延長線于點(diǎn)P,D為AB的中點(diǎn),DP交AC于點(diǎn)M,若BP=8,AM=4,AC=6,則PA=( 。
A.4$\sqrt{2}$B.3$\sqrt{2}$C.$\sqrt{2}$D.5$\sqrt{2}$

分析 過C作CN∥AB交PD于點(diǎn)N,則△MNC∽△MDA,△NPC∽△DPB,結(jié)合AD=BD,求出PC,即可求出PA.

解答 解:由題意知,MC=AC-AM=6-4=2.
過C作CN∥AB交PD于點(diǎn)N,則△MNC∽△MDA,△NPC∽△DPB.
又D為AB的中點(diǎn),
∴AD=BD,∴$\frac{AM}{MC}=\frac{AD}{CN}=\frac{BD}{CN}=\frac{BP}{CP}$,
∴$\frac{8}{PC}=\frac{4}{2}$,∴PC=4.∵PA2=PC•PB=32,
∴PA=4$\sqrt{2}$.
故選:A.

點(diǎn)評 本題主要考查圓的切線、相似三角形等知識,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.圓心在y軸上,半徑為5且過點(diǎn)A(3,-4)的圓的方程為x2+y2=25或x2+(y+8)2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知0<x<y<3,求$\frac{1}{x}+\frac{1}{y-x}+\frac{1}{3-y}$的最小值
(2)若0<x<y<a,不等式$\frac{1}{x^2}+\frac{1}{{{{(y-x)}^2}}}+\frac{1}{{{{(a-y)}^2}}}$≥9恒成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,⊙O的半徑OC垂直于直徑AB,M為OB上一點(diǎn),CM的延長線交⊙O于N,過N點(diǎn)的切線交AB的延長線于P.
(1)求證:PM2=PB•PA;
(2)若⊙O的半徑為3,OB=$\sqrt{3}$OM,求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓E的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過兩點(diǎn)M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)和N(1,$\frac{\sqrt{2}}{2}$).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓的右焦點(diǎn),過點(diǎn)F作斜率為1的直線l交橢圓于AB兩點(diǎn),以AB為直徑的圓O交y軸于P、Q兩點(diǎn),劣弧長PQ記為d,求$\fracw0iqgeu{|AB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)A(x0,y0)(x0,y0≠0)是橢圓T:$\frac{{x}^{2}}{m+1}$+y2=1(m>0)上一點(diǎn),它關(guān)于y軸、原點(diǎn)、x軸的對稱點(diǎn)依次為B,C,D.E是橢圓T上不同于A的另外一點(diǎn),且AE⊥AC,如圖所示.
(Ⅰ) 若點(diǎn)A橫坐標(biāo)為$\frac{\sqrt{3}}{2}$,且BD∥AE,求m的值;
(Ⅱ)求證:直線BD與CE的交點(diǎn)Q總在橢圓$\frac{{x}^{2}}{m+1}$+y2=($\frac{m}{m+2}$)2上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,AB是圓O的直徑,點(diǎn)C在圓O上,延長BC到D使BC=CD,過C作圓O的切線交AD于E,若AB=8,DC=4,則DE=( 。
A.$\sqrt{2}$B.2C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)求過點(diǎn)($\sqrt{3},2\sqrt{2}$)且與雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$有相同漸近線的雙曲線的標(biāo)準(zhǔn)方程.
(Ⅱ) 如圖所示,A、B是橢圓的兩個頂點(diǎn),C是AB的中點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),OC的延長線交橢圓于點(diǎn)M,且|OF|=$\sqrt{2}$,若MF⊥OA,求此橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知PA垂直于矩形ABCD所在平面,PA=3,AB=1,BC=$\sqrt{3}$.
(1)求二面角P-BD-A的正切值;
(2)求二面角B-PD-A的正切值.

查看答案和解析>>

同步練習(xí)冊答案