精英家教網 > 高中數學 > 題目詳情
19.用數字0,1,2,3,4,5組成沒有重復數字的五位數,求其中比40000大的偶數的個數.

分析 根據題意,符合條件的五位數首位數字必須是4、5其中1個,末位數字為0、2、4中其中1個;進而對首位數字分2種情況討論,①首位數字為5時,②首位數字為4時,每種情況下分析首位、末位數字的情況,再安排剩余的三個位置,由分步計數原理可得其情況數目,進而由分類加法原理,計算可得答案.

解答 解:根據題意,符合條件的五位數首位數字必須是4、5其中1個,末位數字為0、2、4中其中1個;
分兩種情況討論:
①首位數字為5時,末位數字有3種情況,在剩余的4個數中任取3個,放在剩余的3個位置上,有A43=24種情況,此時有3×24=72個,
②首位數字為4時,末位數字有2種情況,在剩余的4個數中任取3個,放在剩余的3個位置上,有A43=24種情況,此時有2×24=48個,
共有72+48=120個.

點評 本題考查計數原理的運用,關鍵是根據題意,分析出滿足題意的五位數的首位、末位數字的特征,進而可得其可選的情況.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.已知圓C:(x-a)2+(y-b)2=1過點A(1,0),則圓C的圓心的軌跡是( 。
A.B.直線C.線段D.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.將函數y=sinx+$\sqrt{3}$cosx的圖象向右平移φ(φ>0)個單位,再向上平移1個單位后,所得圖象經過點($\frac{π}{4}$,1),則φ的最小值為$\frac{7π}{12}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.函數f(x)=5|x|向右平移1個單位,得到y(tǒng)=g(x)的圖象,則g(x)關于(  )
A.直線x=-1對稱B.直線x=1對稱C.原點對稱D.y軸對稱

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.如圖所示,坐標紙上的每個單元格的邊長為1,由下往上的六個點:A1(x1,y1),A2(x2,y2),…,A6(x6,y6)的橫、縱坐標分別對應數列{an}(n∈N*)的前12項,(即橫坐標為奇數項,縱坐標為偶數項),如表所示:
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此規(guī)律下去,則a15=-4,a2016=1008.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.在回歸分析的問題中,我們可以通過對數變換把非線性回歸方程y=${c_1}{e^{{c_2}x}}$(c1>0)轉化為線性回歸方程,即兩邊取對數,令z=lny,得到z=c2x+lnc1.受其啟發(fā),可求得函數y=${x^{{{log}_2}x}}$(x>0)的值域是[1,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數據作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.




$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$
46.65636.8289.81.61469108.8
表中wi=$\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(1)根據散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立y關于x的回歸方程;
(3)已知這種產品的年利潤z與x,y的關系為z=0.2y-x.根據(2)的結果,當年宣傳費x=49時,年銷售量及年利潤的預報值是多少?
附:對于一組數據(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline{v)}}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$,$\widehatα=\overline v-\widehatβ\overline u$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.某氣象儀器研究所按以下方案測試一種“彈射型”氣象觀測儀器的垂直彈射高度:在C處(點C在水平地面下方,O為CH與水平地面ABO的交點)進行該儀器的垂直彈射,水平地面上兩個觀察點 A、B兩地相距100米,∠BAC=60°,其中A到C的距離比B到C的距離遠40米.A地測得該儀器在C處的俯角為∠OAC=15°,A地測得最高點H的仰角為∠HAO=30°,則該儀器的垂直彈射高度CH為( 。
A.$210({\sqrt{6}+\sqrt{2}})$米B.$140\sqrt{6}$米C.$210\sqrt{2}$米D.$210({\sqrt{6}-\sqrt{2}})$米

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.觀察數表:
1       2     3    4  …第一行
2       3     4    5  …第二行
3       4     5    6  …第三行
4       5     6    7  …第四行

第一列 第二列 第三列  第四列,
根據數表中所反映的規(guī)律,第n+1行與第m列的交叉點上的數應該是m+n.

查看答案和解析>>

同步練習冊答案