15.一個運動員宿舍的門牌號是一個三位數(shù),一天,他在門外做倒立時發(fā)現(xiàn)門牌號倒著看成了另一個數(shù),而且大了693,則該運動員宿舍的門牌號應是108.

分析 由題意,在門外做倒立時發(fā)現(xiàn)門牌號倒著看成了另一個數(shù),涉及到的數(shù)只能是0,1,6,8,9,根據(jù)條件,即可得出結論.

解答 解:由題意,在門外做倒立時發(fā)現(xiàn)門牌號倒著看成了另一個數(shù),
涉及到的數(shù)只能是0,1,6,8,9,
∵大了693,
∴該運動員宿舍的門牌號應是108,滿足801-108=693,
故答案為:108.

點評 本題考查進行簡單的合情推理,考查學生分析解決問題的能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖:直三棱柱ABC-A1B1C1,底面三角形ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,M、N分別為A1B1、AB的中點.
(1)求證:平面A1NC∥平面BMC1
(2)求異面直線A1C與C1N所成角的大;
(3)求點A到平面A1NC的距離;
(4)直線A1N與平面ACC1A1所成角的大;
(5)二面角A1-CN-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=ex(1+lnx).
(Ⅰ)求曲線f(x)在(1,f(1))處的切線方程;
(Ⅱ)證明:e2f(x)>e-$\frac{2{e}^{x}}{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.甲、乙兩所學校高三年級分別有600人,500人,為了了解兩所學校全體高三年級學生在該地區(qū)五校聯(lián)考的數(shù)學成績情況,采用分層抽樣方法從兩所學校一共抽取了110名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如表:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34714
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)17x42
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y4
(1)計算x,y的值;
(2)若規(guī)定考試成績在[120,150]內為優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認為兩所學校的數(shù)學成績有差異?
甲校乙校總計
優(yōu)秀
非優(yōu)秀
總計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某地震觀測站對地下水位的變化和發(fā)生地震的情況進行了1700次觀測,列聯(lián)表如下
有震無震總計
有變化989021000
無變化82618700
總計18015201700
試問觀測結果是否能說明地下水位的變化與地震的發(fā)生相關.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=lg(ex+$\frac{1}{{e}^{x}}$-a)
(1)若函數(shù)f(x)定義域為R,求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)值域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.(1-2x)5(1+3x)4的展開式中x2的系數(shù)等于(  )
A.-120B.-26C.94D.214

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知i為虛數(shù)單位,a∈R,若$\frac{1-i}{a+i}$為純虛數(shù),則復數(shù)z=(2a+1)+$\sqrt{2}$i的模等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{11}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=|x-1|+|x-2|.
(1)求函數(shù)g(x)=lg(f(x)-2)的定義域;
(2)若f(x)的最小值為m,a,b,c∈R,a+b+c=m,證明:a2+b2+c2≥$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案