15.如圖,在正方體ABCD-A1B1C1D1中,求直線BC1與AC的夾角60°.

分析 由AC∥A1C1,得∠A1C1B是異面直線BC1與AC所成角,由此能求出直線BC1與AC的夾角.

解答 解:∵AC∥A1C1
∴∠A1C1B是異面直線BC1與AC所成角,
∵A1C1=BC1=BD,
∴∠A1C1B=60°,
∴直線BC1與AC的夾角為60°.
故答案為:60°.

點評 本題考查異面直線所成角的求法,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.單調(diào)遞增的等差數(shù)列{an},a2=1,且a2,a3,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若{an} 的前n 項和為Sn,設(shè)bn=$\frac{1}{{S}_{n+2}}$,求數(shù)列{bn} 的前n 項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某程序框圖如圖所示,當輸入的x的值為5時,輸出的y值恰好是$\frac{1}{3}$,則在空白的處理框處應(yīng)填入的關(guān)系式可以是(  )
A.y=x3B.y=3xC.y=3xD.$y=\frac{3}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}的前n項和為Sn,點(n,Sn)在函數(shù)f(x)=${∫}_{1}^{x}$(2t+1)dt的圖象上,則數(shù)列{an}的通項公式為( 。
A.an=2n-2B.an=n2+n-2
C.an=$\left\{\begin{array}{l}{0,}&{n=1}\\{2n-1,}&{n≥2}\end{array}\right.$D.an=$\left\{\begin{array}{l}{0,}&{n=1}\\{2n,}&{n≥2}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,BC是圓O的直徑,過C作圓O的切線AC,連接AB交圓O于點D.
(Ⅰ)若AC=3,圓O的半徑為1,求AD;
(Ⅱ)連接DO并延長交圓O于點E,連接CE,求證:CD2=AD•CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{m+1}$-$\frac{{y}^{2}}{{m}^{2}+1}$=1的焦點為F1,F(xiàn)2,點P在雙曲線上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則△PF1F2的面積的最小值為(  )
A.mB.m2+1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=|(a+1)x+2|.
(1)當a=0時,畫出函數(shù)y=f(x)的圖象;
(2)當a>0時,求方程|(a+1)x+2|=|x+1|+|ax+1|的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知P是雙曲線$\frac{{x}^{2}}{3}$-y2=1上任意一點,過點P分別作曲線的兩條漸近線的垂線,垂足分別為A、B,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的值是( 。
A.-$\frac{3}{8}$B.$\frac{3}{16}$C.-$\frac{\sqrt{3}}{8}$D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(2,-1,-2),$\overrightarrow$=(0,-1,4),求$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{a}$•$\overrightarrow$,(2$\overrightarrow{a}$)•(-$\overrightarrow$),($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)

查看答案和解析>>

同步練習(xí)冊答案