分析 (Ⅰ)通過聯(lián)立(a1+2d)(a1+3d)=48、a1+2d+a1+3d=14,計(jì)算可知d=a1=2,進(jìn)而利用等差數(shù)列的通項(xiàng)公式計(jì)算可得結(jié)論;
(Ⅱ)通過(Ⅰ)bn=2n,進(jìn)而利用等比數(shù)列的求和公式計(jì)算即得結(jié)論.
解答 解:(Ⅰ)由公差d>0及(a1+2d)(a1+3d)=48、a1+2d+a1+3d=14,
解得:d=2或d=-2(舍),a1=2,
∴an=2+2(n-1)=2n;
(Ⅱ)由(Ⅰ)有${b_n}={(\sqrt{2})^{a_n}}$=$(\sqrt{2})^{2n}$=2n,
所以數(shù)列{bn}是等比數(shù)列,首項(xiàng)b1=q=2,
于是Tn=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a32,33 | B. | a2016,1 | C. | a63,32 | D. | a63,63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com