A. | 0 | B. | -1 | C. | 1 | D. | $\frac{1}{2}$ |
分析 畫出滿足條件的平面區(qū)域,求出角點(diǎn)的坐標(biāo),從而求出a的值即可.
解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{2y-x=1}\\{y=2(a-x)}\end{array}\right.$,解得:A($\frac{4a-1}{5}$,$\frac{2a+2}{5}$),
結(jié)合圖象得目標(biāo)函數(shù)z=3x+y過A點(diǎn)時(shí)取得最大值-3,
故$\frac{12a-3}{5}$+$\frac{2a+2}{5}$=-3,解得:a=-1,
故選:B.
點(diǎn)評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k<32? | B. | k<65? | C. | k<64? | D. | k<31? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{a}_{7}-{a}_{2}}{5}≤\frac{{a}_{6}-{a}_{3}}{3}$ | B. | a2+a7≤a3+a6 | ||
C. | 3(a7-a6)≥a6-a3 | D. | a2+a3≥a6+a7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60°或120° | B. | 60° | C. | 30°或150° | D. | 30° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com