分析 (Ⅰ) 利用已知條件求出數(shù)列的公差,然后求數(shù)列{an}的通項公式;
(Ⅱ) 化簡${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}+{a_n}$,通過裂項消項法求數(shù)列{bn}的前n項和Sn.
解答 (本小題滿分12分)
解:(Ⅰ)∵等差數(shù)列{an}的首項a1=1,公差d>0,a2=1+d,a5=1+4d,a14=1+13d,…(3分)
且a2,a5,a14成等比數(shù)列,∴(1+4d)2=(1+d)(1+13d),…(4分)
即d=2,…(5分)
∴an=1+2(n-1)=2n-1.…(6分)
(Ⅱ)∵${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}+{a_n}=\frac{1}{(2n-1)(2n+1)}+(2n-1)$,…(7分)
∴${S_n}=\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]+\frac{n(1+2n-1)}{2}$…(10分)
=$\frac{n}{2n+1}+{n^2}$.…(12分)
點評 本題考查數(shù)列的通項公式的求法,數(shù)列求和的簡單方法的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M-(M-N)=N | B. | (M-N)+(N-M)=∅ | C. | (M+N)-M=N | D. | (M-N)∩(N-M)=∅ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com