15.求下列積分:
(1)${∫}_{1}^{3}(|x-2|+\frac{1}{{x}^{2}})$dx;
(2)${∫}_{1}^{2}\frac{1}{x(x+1)}dx$.

分析 (1)去絕對值,${∫}_{1}^{3}(|x-2|+\frac{1}{{x}^{2}})$dx=${∫}_{1}^{2}$(2-x+$\frac{1}{{x}^{2}}$)dx+${∫}_{2}^{3}$(x-2+$\frac{1}{{x}^{2}}$)dx分別積分即可,
(2)采取列項,再根據(jù)定積分的計算法則計算即可.

解答 解:(1):${∫}_{1}^{3}(|x-2|+\frac{1}{{x}^{2}})$dx=${∫}_{1}^{2}$(2-x+$\frac{1}{{x}^{2}}$)dx+${∫}_{2}^{3}$(x-2+$\frac{1}{{x}^{2}}$)dx=(2x-$\frac{1}{2}$x2-$\frac{1}{x}$)|${\;}_{1}^{2}$+(-2x+$\frac{1}{2}$x2-$\frac{1}{x}$)|${\;}_{2}^{3}$=1+$\frac{2}{3}$=$\frac{5}{3}$
(2)${∫}_{1}^{2}\frac{1}{x(x+1)}dx$=${∫}_{1}^{2}$($\frac{1}{x}$-$\frac{1}{x+1}$)dx=[lnx-ln(x+1)]|${\;}_{1}^{2}$=ln2-ln3-ln1+ln2=-ln3.

點評 本題考查了定積分的計算,關(guān)鍵是轉(zhuǎn)化,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)P是△ABC所在平面內(nèi)的一點,$\overrightarrow{BC}+\overrightarrow{BA}=2\overrightarrow{BP}$,則( 。
A.P、A、C三點共線B.P、A、B三點共線C.P、B、C三點共線D.以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式組$\left\{\begin{array}{l}{x+2y+4≥0}\\{x+4y≤0}\\{x≤0}\end{array}\right.$,表示的平面區(qū)域的面積等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=$\frac{1}{1+(tanx-1)^{2}}$的最大值為(  )
A.$\frac{1}{2}$B.1C.0D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l上有三點A,B,P,若$\overrightarrow{AB}$=3$\overrightarrow{BP}$且$\overrightarrow{AP}$=$λ\overrightarrow{PB}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.利用數(shù)學(xué)歸納法證明不等式:
$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項和為Sn,且{$\frac{{S}_{n}}{n}$}是等差數(shù)列,已知a1=1,$\frac{{S}_{2}}{2}$+$\frac{{S}_{3}}{3}$+$\frac{{S}_{4}}{4}$=12.
(1)求{an}的通項公式;
(2)若對任意的n∈N*,an+1+$\frac{16}{{a}_{n}}$≥λ恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某服裝廠平均每小時大約生產(chǎn)服裝362件,要求質(zhì)檢員每小時抽取40件服裝檢驗其質(zhì)量狀況,請用系統(tǒng)抽樣的方法設(shè)計一個抽樣方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列五種說法:
(1)函數(shù)y=ax(a>0,a≠1)與函數(shù)y=x2的定義域相同;
(2)函數(shù)y=$\sqrt{x}$與函數(shù)y=lnx的值域相同;
(3)函數(shù)y=log3(x2-2x-3)的單調(diào)增區(qū)間是[1,+∞);
(4)函數(shù)y=$\frac{1}{2}+\frac{1}{{{2^x}-1}}$與y=$\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$都是奇函數(shù);
(5)記函數(shù)f(x)=x-[x](注:[x]表示不超過x的最大整數(shù),例如:[3.2]=3,[-2.3]=-3),則f(x)的值域是[0,1).其中所有正確的序號是(1)(4)(5).

查看答案和解析>>

同步練習(xí)冊答案