4.設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(3)=0,當(dāng)x<0時,xf′(x)+f(x)>0,則有(  )
A.f(-3)<f(1)<f(2)B.f(2)<f(-3)<f(1)C.f(1)<f(-3)<f(2)D.f(-3)<f(2)<f(1)

分析 根據(jù)函數(shù)的奇偶性和條件,判斷函數(shù)F(x)=xf(x)的單調(diào)性,進而分析出f(2),f(-3),f(1)的大小關(guān)系,可得答案.

解答 解:∵f(x)是奇函數(shù),f′(x)為偶函數(shù),
令F(x)=xf(x),則F(x)為偶函數(shù),
F′(x)=xf′(x)+f(x),
∵x<0時,xf′(x)+f(x)>0,
∴當(dāng)x∈(-∞,0]時,函數(shù)F(x)為增函數(shù),
當(dāng)x∈[0,+∞)時,函數(shù)F(x)為減函數(shù),
又由f(3)=0,
∴f(-3)=0,F(xiàn)(3)=0,
∴F(2)=2f(2)>0,
F(1)>F(2)>0,
即f(1)>2f(2)>0,
故f(-3)<f(2)<f(1),
故選:D

點評 本題考查的知識點是函數(shù)的奇偶性,函數(shù)的單調(diào)性,導(dǎo)數(shù)符號與原函數(shù)單調(diào)性的關(guān)系,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對于任意兩個實數(shù)a,b定義運算“*”如下:a*b=$\left\{\begin{array}{l}{a(a≤b)}\\{b(a>b)}\end{array}\right.$,則函數(shù)f(x)=x2*[(6-x)*(2x+15)]的最大值為(  )
A.25B.16C.9D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,試分析該幾何體結(jié)構(gòu)特征并畫出物體的實物草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.焦點為(0,±3),且與雙曲線$\frac{x^2}{2}-{y^2}=1$有相同的漸近線的雙曲線方程是( 。
A.$\frac{x^2}{3}-\frac{y^2}{6}=1$B.$\frac{y^2}{3}-\frac{x^2}{6}=1$C.$\frac{y^2}{6}-\frac{x^2}{3}=1$D.$\frac{x^2}{6}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2-3x-1,則函數(shù)g(x)=f(x)-k恰有三個零點,則實數(shù)k的取值范圍是(-10,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{x^2}{{\sqrt{x+1}}}$,g(x)=$\frac{{\sqrt{x+1}}}{x}$,則f(x)•g(x)=x,x∈(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法不正確的是( 。
A.圓柱的側(cè)面展開圖是一個矩形
B.圓錐中過圓錐軸的截面是一個等腰三角形
C.直角三角形繞它的一邊旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體是一個圓錐
D.用一個平面截一個圓柱,所得截面可能是矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.△ABC中,角A、B、C的對應(yīng)邊分別為a、b、c,且滿足2asin(C+$\frac{π}{6}$)=b:
(1)求A的值:
(2)若b+2c=2,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$5\sqrt{x-1}+\sqrt{2}•\sqrt{5-x}$最大值為( 。
A.108B.$6\sqrt{3}$C.10D.27

查看答案和解析>>

同步練習(xí)冊答案