15.在(x2-$\frac{1}{2x}$)6的展開式中,常數(shù)項等于$\frac{15}{16}$.

分析 設(shè)(x2-$\frac{1}{2x}$)6的展開式的通項公式為Tr+1=$(-\frac{1}{2})^{r}$${∁}_{6}^{r}$x12-3r,令12-3r=0,解得r即可得出.

解答 解:設(shè)(x2-$\frac{1}{2x}$)6的展開式的通項公式為Tr+1=${∁}_{6}^{r}({x}^{2})^{6-r}(-\frac{1}{2x})^{r}$=$(-\frac{1}{2})^{r}$${∁}_{6}^{r}$x12-3r
令12-3r=0,解得r=4.
∴常數(shù)項為T5=$(-\frac{1}{2})^{4}{∁}_{6}^{4}$=$\frac{15}{16}$.
故答案為:$\frac{15}{16}$.

點評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知3a=6,b=log35,則3a+2b=150.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若log32=0.6309,則log312=2.2618.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若數(shù)列{an}的通項公式an=$\frac{1}{2+4+6+…+2n}$,且前n項和為Sn,則S2015=(  )
A.$\frac{2015}{2016}$B.$\frac{2014}{2015}$C.$\frac{4028}{2015}$D.$\frac{2014}{4030}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,以x軸正半軸為始邊作角α與β(0<β<α<π),它們終邊分別與單位圓相交于點P、Q.已知點P(-$\frac{3}{5}$,$\frac{4}{5}$),$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,求:
(1)Q點坐標(biāo);
(2)sin(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知平面α⊥平面β,α∩β=l,在l上有兩點AB,線段AC?α,線段BD?β,并且AC⊥l,BD⊥l,AB=6,AC=8,BD=24,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.四棱錐P-ABCD中,底面ABCD是邊長為a的菱形,∠A=60°,PC⊥平面ABCD,PC=a,E為PA的中點,
(1)求證:PC∥平面EBD.
(2)求E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,AB為圓柱的軸,CD為底面直徑,E為底面圓周上一點,AB=1,CD=2,CE=DE.
求(1)三棱錐A-CDE的全面積;
(2)點D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到A1點,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.
(Ⅰ)求證:BC⊥A1D;
(Ⅱ)求證:平面A1BC⊥平面A1BD;
(Ⅲ)求點C到平面A1BD的距離.

查看答案和解析>>

同步練習(xí)冊答案