分析 由已知數(shù)列遞推式可得an+1=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3…+$\frac{1}{n-1}$an-1+$\frac{1}{n}{a}_{n}$,作差后即可得到$\frac{{a}_{n+1}}{n+1}=\frac{{a}_{n}}{n}$(n≥2),再由已知求出a2,則數(shù)列在n≥2時(shí)的通項(xiàng)公式可求,由ak=100求得k值.
解答 解:由an=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3…+$\frac{1}{n-1}$an-1,(n≥2,n∈N*),得
an+1=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3…+$\frac{1}{n-1}$an-1+$\frac{1}{n}{a}_{n}$,
兩式作差得:${a}_{n+1}-{a}_{n}=\frac{1}{n}{a}_{n}$(n≥2),
∴${a}_{n+1}=\frac{n+1}{n}{a}_{n}$,
∴$\frac{{a}_{n+1}}{n+1}=\frac{{a}_{n}}{n}$(n≥2),
由a1=1,an=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3…+$\frac{1}{n-1}$an-1,得a2=a1=1,
∴當(dāng)n≥2時(shí),$\frac{{a}_{n}}{n}=\frac{{a}_{2}}{2}=\frac{1}{2}$,${a}_{n}=\frac{n}{2}$,
由ak=100=$\frac{k}{2}$,得k=200.
故答案為:200.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了作差法求數(shù)列的通項(xiàng)公式,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\frac{11}{5}$ | D. | $\frac{37}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m?α,n?α,m∥β,n∥β,則α∥β | B. | 若m∥n,n∥α,則m∥α | ||
C. | 若m⊥α,n⊥α,則m∥n | D. | 若α⊥γ,β⊥γ,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 150° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 互斥但非對(duì)立事件 | B. | 對(duì)立事件 | ||
C. | 相互獨(dú)立事件 | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com