分析 由條阿金利用平面向量基本定理及其幾何意義,求得x、y滿足的條件,可得所求的面積.
解答 解:∵正△ABC邊長為1,$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),
當(dāng)點P在BC上時,x+y=1,
而已知P是三角形ABC內(nèi)部任一點,∴x+y<1,且x>0,y>0.
∴$\left\{\begin{array}{l}{x>0}\\{y>0}\\{x+y<1}\end{array}\right.$,滿足上述約束條件的點M(x,y)的可行域為一個三角形OMN的內(nèi)部,
頂點O(0,0)、M(1,0)、N(0,1).
故坐標(biāo)系中點(x,y)對應(yīng)區(qū)域面積為$\frac{1}{2}$•OM•ON=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.
點評 本題主要考查平面向量基本定理及其幾何意義,判斷 x+y<1,是解題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | ||
C. | 鈍角三角形 | D. | 銳角或鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com