10.已知函數(shù)f(x)=cos(2ωx-$\frac{π}{3}$)+sin2ωx-cos2ωx(ω>0)的最小正周期是π.
(1)求函數(shù)f(x)圖象的對(duì)稱(chēng)軸方程;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

分析 (1)利用二倍角的正弦公式,兩角差的余弦、正弦公式化簡(jiǎn)解析式,由周期公式求出ω的值,由正弦函數(shù)的對(duì)稱(chēng)軸求出函數(shù)f(x)圖象的對(duì)稱(chēng)軸方程;
(2)由正弦函數(shù)的增區(qū)間、整體思想求出函數(shù)f(x)的單調(diào)遞增區(qū)間.

解答 解:(1)由題意得,f(x)=$\frac{1}{2}$cos2ωx+$\frac{\sqrt{3}}{2}$sin2ωx-cos2ωx
=$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$cos2ωx=$sin(2ωx-\frac{π}{6})$,
∴最小正周期T=$\frac{2π}{ω}$=π,解得ω=1,則f(x)=$sin(2x-\frac{π}{6})$ 
由$2x-\frac{π}{6}=\frac{π}{2}+kπ(k∈Z)$ 得,$x=\frac{π}{3}+\frac{kπ}{2}(k∈Z)$,
∴f(x)圖象的對(duì)稱(chēng)軸方程是$x=\frac{π}{3}+\frac{kπ}{2}(k∈Z)$;
(2)由(1)得f(x)=$sin(2x-\frac{π}{6})$,
由$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2}(k∈Z)$ 得,
$kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3}(k∈Z)$,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是$[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$.

點(diǎn)評(píng) 本題考查正弦函數(shù)的性質(zhì),二倍角的正弦公式,以及兩角差的余弦、正弦公式,考查化簡(jiǎn)、變形能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=$\frac{1}{\sqrt{4-{x}^{2}}}$+lnx的定義域?yàn)椋?,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的側(cè)面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖在三棱錐P-ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn),已知AD=PD,PA=6,BC=8,DF=5,求證:
(1)直線PA∥平面DEF;
(2)平面DEF⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.某工廠生產(chǎn)A、B、C、D四種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5:2,現(xiàn)用分層抽樣的方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)的產(chǎn)品有16件,那么此樣本的容量n=96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿(mǎn)足AB⊥AD,BC∥AD且BC=4,點(diǎn)M為PC的中點(diǎn),點(diǎn)E為BC邊上的點(diǎn),且$\frac{BE}{EC}$=λ.
(Ⅰ)求證:平面ADM⊥平面PBC;
(Ⅱ)是否存在實(shí)數(shù)λ,使得二面角P-DE-B的余弦值為$\frac{\sqrt{2}}{2}$?若存在,求出實(shí)數(shù)λ的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在三棱椎P-ABC中,PA=PB=PC=AC=4,AB=BC=2$\sqrt{2}$.
(Ⅰ)求證:平面ABC⊥平面APC.
(Ⅱ)若動(dòng)點(diǎn)M在底面三角形ABC內(nèi)(包括邊界)運(yùn)動(dòng),使二面角M-PA-C的余弦值為$\frac{3\sqrt{93}}{31}$,求此時(shí)∠MAB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知四邊形ABCD為梯形,AB∥DC,對(duì)角線AC,BD交于點(diǎn)O,CE⊥平面ABCD,CE=AD=DC=BC=1,∠ABC=60°,F(xiàn)為線段BE上的點(diǎn),$\overrightarrow{EF}$=$\frac{1}{3}$$\overrightarrow{EB}$.
(I)證明:OF∥平面CED;
(Ⅱ)求平面ADF與平面BCE所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)g(x)=x2-2(x∈R),f(x)=$\left\{\begin{array}{l}{g(x)+x+4,x<g(x)}\\{g(x)-x,x≥g(x)}\end{array}\right.$,求f(f(0))的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案