A. | 2$\sqrt{2}$ | B. | 3 | C. | -2$\sqrt{2}$ | D. | 不存在 |
分析 先構(gòu)造函數(shù)f(t)=t+$\frac{2}{t}$得f(t)在(0,$\sqrt{2}$)上單調(diào)遞減,在($\sqrt{2}$,+∞)上單調(diào)遞增,進(jìn)而得出f(t)min=f(1)=3.
解答 解:構(gòu)造函數(shù)f(t)=t+$\frac{2}{t}$,
根據(jù)雙勾函數(shù)的圖象和性質(zhì),
f(t)在(0,$\sqrt{2}$)上單調(diào)遞減,在($\sqrt{2}$,+∞)上單調(diào)遞增,
所以,當(dāng)t∈(0,1]時(shí),f(t)單調(diào)遞減,
即f(t)min=f(1)=3,
故答案為:B.
點(diǎn)評(píng) 本題主要考查了應(yīng)用函數(shù)的單調(diào)性求函數(shù)的最值,涉及雙勾函數(shù)的圖象和性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{1}{4}$,+∞) | B. | [0,+∞) | C. | ($\frac{1}{4}$,+∞) | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $1-\frac{1}{n+2}$ | B. | $1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}$ | ||
C. | $\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$ | D. | $2(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $x→y={(\frac{1}{3})^x}$ | B. | x→y=|x| | C. | x→y=log2x | D. | x→y=x2-2x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com