6.函數(shù)f(x)=$\sqrt{4-x}$+lg(x-1)的定義域為(1,4].

分析 根據(jù)函數(shù)的解析式,列出不等式組$\left\{\begin{array}{l}{4-x≥0}\\{x-1>0}\end{array}\right.$,求出解集即可.

解答 解:要使函數(shù)有意義,則$\left\{\begin{array}{l}{4-x≥0}\\{x-1>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≤4}\\{x>1}\end{array}\right.$,
∴1<x≤4.
即函數(shù)f(x)的定義域為(1,4].
故答案為:(1,4].

點評 本題考查了根據(jù)函數(shù)的解析式求定義域的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}滿足:a1=10,a2=5,an-an+2=2(n∈N*).求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$(a>b>0)的離心率$e=\frac{{\sqrt{6}}}{3}$,焦距是$2\sqrt{2}$.
(1)求橢圓的方程;
(2)若直線y=kx+2(k≠0)與橢圓交于C、D兩點,$\left|{CD}\right|=\frac{{6\sqrt{2}}}{5}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=-x2+ax(a∈R).
(1)當(dāng)a=3時,求函數(shù)f(x)在$[{\frac{1}{2},2}]$上的最大值和最小值;
(2)當(dāng)函數(shù)f(x)在$({\frac{1}{2},2})$單調(diào)時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$f(x)=lg\frac{1-x}{1+x}$.
(1)判斷f(x)的奇偶性,并說明理由;
(2)設(shè)f(x)的定義域為D,a,b∈D.求$f(a)+f(b)-f(\frac{a+b}{1+ab})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.橢圓$\frac{x^2}{100}+\frac{y^2}{64}$=1的焦點為F1、F2,橢圓上的點P滿足∠F1PF2=600,則△F1PF2的面積是(  )
A.$\frac{{64\sqrt{3}}}{3}$B.$\frac{{91\sqrt{3}}}{3}$C.$\frac{{16\sqrt{3}}}{3}$D.$\frac{64}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=sinx-cosx,則$f(\frac{π}{12})$=$-\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.先后拋擲兩枚均勻的正方體骰子,觀察向上的點數(shù),問:
(1)共有多少種不同的結(jié)果?
(2)所得點數(shù)之和是11的概率是多少?
(3)所得點數(shù)之和是4的倍數(shù)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一個口袋內(nèi)有大小相等的1個白球和已編有不同號碼的3個黑球,從中摸出2個球,
(1)共有多少種不同的結(jié)果?
(2)摸出2個黑球的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案